Abstract. The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m−3 (16–32 %) to PM10 and 2.3 and 9.4 µg m−3 (15–36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37–82 %) but also in PM10 (40–71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14–24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but is again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and is used as fuel in 96 % of homes, while in other cities, PM levels increase on an annual basis by 1–9 µg m−3 due to biomass burning influence. Other significant sources are the following. – Local dust, 7–12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2–7 % at SUB-UB sites and 15 % at the TR site. – Industry, mainly metallurgy, contributing 4–11 % of PM10 (5–12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. – Natural contributions from sea salt (13 % of PM10 in POR-TR, but only 2–7 % in the other cities) and Saharan dust (14 % in ATH-SUB, but less than 4 % in the other cities). During high pollution days, the largest sources (i.e. excluding secondary aerosol factors) of PM10 and PM2.5 are VEX + NEX in BCN-UB (27–22 %) and POR-TR (31–33 %), BB in FI-UB (30–33 %) and MLN-UB (35–26 %) and Saharan dust in ATH-SUB (52–45 %). During those days, there are also quite important industrial contributions in BCN-UB (17–18 %) and local dust in POR-TR (28–20 %).
Fireworks are one of the most unusual sources of pollution in atmosphere; although transient, these pollution episodes are responsible for high concentrations of particles (especially metals and organic compounds) and gases. In this paper, results of a study on chemical-physical properties of airborne particles (elements, ions, organic and elemental carbon and particles size distributions) collected during a fireworks episode in Milan (Italy) are reported. Elements typically emitted during pyrotechnic displays increased in 1 h as follows: Sr (120 times), Mg (22 times), Ba (12 times), K (11 times), and Cu (6 times). In our case study, Sr was recognised as the best fireworks tracer because its concentration was very high during the event and lower than, or comparable with, minimum detection limits during other time intervals, suggesting that it was mainly due to pyrotechnic displays. In addition, particles number concentrations increased significantly during the episode (up to 6.7 times in 1 h for the 0.5odo1 mm size bin). Contributions (e.g. Cu, elemental carbon and nitrogen oxides) to air pollution due to the large traffic volume registered during the same night were also singled out.The original application of Positive Matrix Factorisation and Multiple Linear Regression allowed, as far as we know, here for the first time, the quantification of the fireworks contribution to atmospheric particulate matter (PM) and the resolution of their chemical profile. The contribution of fireworks to the local environment in terms of PM 10 mass, elements and chemical components was assessed with 4-h time resolution. PM 10 mass apportioned by fireworks was up to 33.6 mg m À3 (about 50% of the total PM 10 mass). Major contributors were elemental and organic carbon (2.8 and 8.1 mg m À3, respectively) as well as metals like Mg, K, Sr, Ba, and Cu (0.4, 0.7, 0.07, 0.1, and 0.1 mg m À3 , respectively).
Abstract. Measurements of aerosol chemical composition made on the island of Lampedusa, south of the Sicily channel, during years [2004][2005][2006][2007][2008], are used to identify the influence of heavy fuel oil (HFO) combustion emissions on aerosol particles in the Central Mediterranean. Aerosol samples influenced by HFO are characterized by elevated Ni and V soluble fraction (about 80 % for aerosol from HFO combustion, versus about 40 % for crustal particles), high V and Ni to Si ratios, and values of V sol > 6 ng m −3 . Evidence of HFO combustion influence is found in 17 % of the daily samples. Back trajectories analysis on the selected events show that air masses prevalently come from the Sicily channel region, where an intense ship traffic occurs. This behavior suggests that single fixed sources like refineries are not the main responsible for the elevated V and Ni events, which are probably mainly due to ships emissions.V sol , Ni sol , and non-sea salt SO 2− 4 (nssSO 2− 4 ) show a marked seasonal behaviour, with an evident summer maximum. Such a pattern can be explained by several processes: (i) increased photochemical activity in summer, leading to a faster production of secondary aerosols, mainly nssSO 2− 4 , from the oxidation of SO 2 (ii) stronger marine boundary layer (MBL) stability in summer, leading to higher concentration of emitted compounds in the lowest atmospheric layers. A very intense event in spring 2008 was studied in detail, also using size segregated chemical measurements. These data show that elements arising from heavy oil combustion (V, Ni, Al, Fe) are distributed in the sub-micrometric fraction of the aerosol, and the metals are present as free metals, carbonates, oxides hydrates or labile complex with organic ligands, so that they are dissolved in mild condition (HNO 3 , pH1.5).Data suggest a characteristic nssSO 2− 4 /V ratio in the range 200-400 for HFO combustion aerosols in summer at Lampedusa. By using the value of 200 a lower limit for the HFO contribution to total sulphates is estimated. HFO combustion emissions account, as a summer average, at least for 1.2 µg m −3 , representing about 30 % of the total nssSO 2− 4 , 3.9 % of PM 10 , 8 % of PM 2.5 , and 11 % of PM1. Within the used dataset, sulphate from HFO combustion emissions reached the peak value of 6.1 µg m −3 on 26 June 2008, when it contributed by 47 % to nssSO 2− 4 , and by 15 % to PM 10 .
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values. IntroductionIn recent years, atmospheric aerosols have been studied extensively (Charlson et al., 1992;Harrison et al., 2001;Satheesh and Moorthy, 2005 , 2002a,b;Stieb et al., 2002;Fernandez et al., 2003).Up to now, PM concentrations have been routinely monitored. However, this level of monitoring is insufficient and a measurement of the elemental and chemical composition of PM is recommended in order to achieve a more complete picture. Indeed concentration limits have been set in Europe for some toxic elements (Pb, Ni, Cd, Hg; see the recent European Directive 2004/107/CE). Element and/or compound measurements can also help to trace specific emission patterns. Thus, the knowledge of the chemical composition of particulate matter can be used to evaluate the impacts of the various pollution sources on air quality. Several "source apportionment" strategies have been developed; receptor models (Gordon, 1988) are presently considered the most effective approach. These models usually provide three pieces of information: the number of (major) sources of particulate matter, the source profiles and the mass contribution of each source to total PM. These models single out groups of elements with correlated concentration trends, which
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.