The interaction of 5'-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of Earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2-12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5'-AMP per gram of clay. Two desorption stages were employed--H2O wash and NaOH extraction (pH = 12.0). 5'-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5'-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attraction and repulsion of 5'-AMP and may have been operating on the primitive Earth, leading to sequences of adsorption and release of this biomolecule.
The effect of adsorbed ions and pH on the adsorption of several purine and pyrimidine nucleotides on montmorillonite was studied. The cations used to prepare homoionic montmorillonite was Na+, Mn2+, Fe3+, Co2+, Ni+, Cu2+, and Zn2+. The nucleotides studied were 5'-,3'-, and 2'-AMP, and 5'-CMP in the pH range 2 through 12. The results show that preferential adsorption amongst nucleotides and similar molecules is dependent upon pH and the nature of the substituted metal cation in the clay. At neutral pH, it was observed that 5'-AMP was more strongly adsorbed than 2'AMP, 3'-AMP, and 5'-CMP. Cu2+ and Zn2+ clays showed enhanced adsorption of 5'-AMP compared to the other cation clays studied in the pH range 4-8. Below pH 4, the adsorption is attributed to cation and anion exchange adsorption mechanisms: above pH 4, anion exchange may also occur, but the adsorption (when it occurs) likely depends on a complexation mechanism occurring between metal cation in the clay exchange site the biomolecule. It is thus proposed that homoionic clays may have played a significant role in the concentration mechanism of biomonomers in the prebiotic environment, a prerequisite step necessary for the formation of biopolymers in the remaining steps leading to the origin of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.