Plasma spray coating with ceramic carbide is a promising approach for improving the surface quality of the materials. In this work, the effectiveness of tungsten carbide (WC), chromium carbide (Cr3C2), and the composite coating of the two powders in the weight ratio of 50:50 were investigated. In the erosion test, aluminum oxide (Al2O3) particles were combined with a high‐speed air‐jet and impinged at 90° on the top surface of the material. Electrochemical polarization and electrochemical impedance spectroscopy studies were conducted with a 3.5 wt.% of sodium chloride (NaCl) solution as the electrolyte. Using a scanning electron microscope, the surface morphology of powders and coatings, as well as the mechanisms of erosion and corrosion, were studied. Energy‐dispersive X‐ray analysis and X‐ray diffractometry were used to reveal the composition and elemental distribution of the feedstock powders and coatings. Because of the presence of hard phases, the composite coating shows the highest average microhardness of 1350.2 HV. The composite coating exhibits improved erosive wear resistance with an increase in erodent exposure time. The Cr3C2 coating has a reduced corrosion current density of 1.404 × 10−5 mA/cm2 and a higher charge transfer resistance of 2086.75 Ω cm2 due to passivation.
Fixture layout optimization is a procedure to optimize position of locators and clamps in order to minimize specified objectives. Deformation of workpiece is a serious problem of concern while designing a fixture. Proper positioning of fixture elements is indispensable to achieve desired machining accuracy, better surface finish and high productivity. In this work, a novel methodology is proposed that incorporates full factorial design of experiments and statistical analysis. Furthermore, the stability of the workpiece is ensured prior to the prediction of objective function. The result of the proposed technique is compared with the results of the genetic algorithm-based optimization technique. A case study has been considered to evaluate the proposed methodology. The objective function determines maximum elastic deformation of the workpiece during the entire machining process. Finite element method is used to formulate the objective functions. The constraints are natural frequency of the workpiece-fixture system and reaction forces. Besides, artificial neural network-based model is developed to predict the elastic deformation of the workpiece-fixture system within the range of design parameters.
KeywordsFixture layout design, iterative design of experiments, finite element method, artificial neural network Date
Dimensional and form accuracy of the workpiece can be improved by effective fixture layout design which shows minimum deformation of the workpiece during machining. Flexible fixtures are inevitable in industries owing to high product variety and shortened production time. Hence, an integrated approach is presented to select the optimum position of locating and clamping elements in a flexible fixture that provide good form accuracy. In this approach, a Parametric Finite Element Model (PFEM) is developed using the information about the workpiece, fixture plan and machining condition. PFEM is used to predict the elastic deformation of the workpiece for the fixture layouts generated using a discrete Genetic Algorithm (GA) with mixed integer-discrete variables. The objective is to minimize the maximum deformation of the workpiece by optimizing fixture layouts. The stability of the workpiece and fixture system is ensured by implementing non-negative reaction force constraints in GA. The proposed approach is applied for a prismatic workpiece to carry out pocket milling operation. The significance of this work is to express the flexibility and computational effectiveness of PFEM to accommodate variation in the workpiece, machining condition and fixture plan while designing flexible fixtures. Further, it highlights a significant reduction in search space due to the use of discrete GA and stability constraint as it takes less objective function calculations. An experimental analysis is performed to study the effectiveness of the proposed approach. Therefore, the proposed approach provides a viable solution to the optimization problem in flexible fixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.