Abstract. Social networks often serve as a medium for the diffusion of ideas or innovations. An individual's decision whether to adopt a product or innovation will be highly dependent on the choices made by the individual's peers or neighbors in the social network. In this work, we study the game of innovation diffusion with multiple competing innovations such as when multiple companies market competing products using viral marketing. Our first contribution is a natural and mathematically tractable model for the diffusion of multiple innovations in a network. We give a (1−1/e) approximation algorithm for computing the best response to an opponent's strategy, and prove that the "price of competition" of this game is at most 2. We also discuss "first mover" strategies which try to maximize the expected diffusion against perfect competition. Finally, we give an FPTAS for the problem of maximizing the influence of a single player when the underlying graph is a tree.
Researchers working on the planning, scheduling and execution of scientific workflows need access to a wide variety of scientific workflows to evaluate the performance of their implementations. We describe basic workflow structures that are composed into complex workflows by scientific communities. We provide a characterization of workflows from five diverse scientific applications, describing their composition and data and computational requirements. We also describe the effect of the size of the input datasets on the structure and execution profiles of these workflows. Finally, we describe a workflow generator that produces synthetic, parameterizable workflows that closely resemble the workflows that we characterize. We make these workflows available to the community to be used as benchmarks for evaluating various workflow systems and scheduling algorithms.
Advances in computational, storage and network technologies as well as middle ware such as the Globus Toolkit allow scientists to expand the sophistication and scope of data-intensive applications. These applications produce and analyze terabytes and petabytes of data that are distributed in millions of files or objects. To manage these large data sets efficiently, metadata or descriptive information about the data needs to be managed. There are various types of metadata, and it is likely that a range of metadata services will exist in Grid environments that are specialized for particular types of metadata cataloguing and discovery. In this paper, we present the design of a Metadata Catalog Service (MCS) that provides a mechanism for storing and accessing descriptive metadata and allows users to query for data items based on desired attributes. We describe our experience in using the MCS with several applications and present a scalability study of the service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.