We present the first high-resolution, soft X-ray spectrum of the prototypical Seyfert 2 galaxy, NGC 1068. This spectrum was obtained with the XMM-Newton Reflection Grating Spectrometer (RGS). Emission lines from H-like and He-like low-Z ions (from C to Si) and Fe L-shell ions dominate the spectrum. Strong, narrow radiative recombination continua (RRCs) for several ions are also present, implying that most of the observed soft X-ray emission arises in low-temperature plasma (kT e $ a few eV). This plasma is photoionized by the inferred nuclear continuum (obscured along our line of sight), as expected in the unified model of active galactic nuclei (AGNs). We find excess emission (compared to pure recombination) in all resonance lines (1s!np) up to the photoelectric edge, demonstrating the importance of photoexcitation as well. We introduce a simple model of a cone of plasma irradiated by the nuclear continuum; the line emission we observe along our line of sight perpendicular to the cone is produced through recombination/radiative cascade following photoionization and radiative decay following photoexcitation. A remarkably good fit is obtained to the H-like and He-like ionic line series, with inferred radial ionic column densities consistent with recent observations of warm absorbers in Seyfert 1 galaxies. Previous Chandra imaging revealed a large (extending out to $500 pc) ionization cone containing most of the X-ray flux, implying that the warm absorber in NGC 1068 is a large-scale outflow. To explain the ionic column densities, a broad, flat distribution in the logarithm of the ionization parameter ( ¼ L X =n e r 2 ) is necessary, spanning log ¼ 0-3. This suggests either radially stratified ionization zones, the existence of a broad density distribution (spanning a few orders of magnitude) at each radius, or some combination of both.
Abstract. We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMMNewton observatory. Abell 1835 is a luminous (10 46 ergs s −1 ), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kTe = 8.2 keV) outer envelope. We detect O VIII Lyα and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kTe = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.
Abstract. The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of ∼200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of ∼4 keV. The volume emission measure of any cool component (< 1 keV) is less than a few % of the hot component at the cluster center. A strong O viii Lyman α line was detected with the RGS from the cluster core. The O abundance and its ratio to Fe at the cluster center is 0.2-0.5 and 0.5-1.5 times the solar value, respectively.
Abstract. We present spatially resolved X-ray spectra taken with the EPIC cameras of XMM-Newton of a sample of 17 cooling clusters and three non-cooling clusters for comparison. The deprojected spectra are analyzed with a multi-temperature model, independent of any a priori assumptions about the physics behind the cooling and heating mechanisms. All cooling clusters show a central decrement of the average temperature, most of them of a factor of ∼2. Three clusters (Sérsic 159−3, MKW 3s and Hydra A) only show a weak temperature decrement, while two others (A 399 and A 2052) have a very strong temperature decrement. All cooling clusters show a weak pressure gradient in the core. More important, at each radius within the cooling region the gas is not isothermal. The differential emission measure distribution shows a strong peak near the maximum (ambient) temperature, with a steep decline towards lower temperatures, approximately proportional to T 3 , or alternatively a cut-off at about a quarter to half of the maximum temperature. In general, we find a poor correlation between radio flux of the central galaxy and the temperature decrement of the cooling flow. This is interpreted as evidence that except for a few cases (like the Hydra A cluster) heating by a central AGN is not the most common cause of weak cooling flows. We investigate the role of heat conduction by electrons and find that the theoretically predicted conductivity rates are not high enough to balance radiation losses. The differential emission measure distribution has remarkable similarities with the predictions from coronal magnetic loop models. Also the physical processes involved (radiative cooling, thermal conduction along the loops, gravity) are similar for clusters loops and coronal loops. If coronal loop models apply to clusters, we find that a few hundred loops per scale height should be present. The typical loop sizes deduced from the observed emission measure distribution are consistent with the characteristic magnetic field sizes deduced from Faraday rotation measurements.
Abstract. We present the results from a 500 ks Chandra observation of the Seyfert 1 galaxy NGC 5548. We detect broadened (full width half maximum = 8000 km s −1 ) emission lines of O and C in the spectra, similar to those observed in the optical and UV bands. The source was continuously variable, with a 30% increase in luminosity in the second half of the observation. The gradual increase in luminosity occurred over a timescale of ∼300 ks. No variability in the warm absorber was detected between the spectra from the first 170 ks and the second part of the observation. The longer wavelength range of the LETGS resulted in the detection of absorption lines from a broad range of ions, in particular of C, N, O, Ne, Mg, Si, S and Fe. The velocity structure of the X-ray absorber is consistent with the velocity structure measured simultaneously in the ultraviolet spectra. We find that the highest velocity outflow component, at −1040 km s −1 , becomes increasingly important for higher ionization parameters. This velocity component spans at least three orders of magnitude in ionization parameter, producing both highly ionized X-ray absorption lines (Mg , Si ) as well as UV absorption lines. A similar conclusion is very probable for the other four velocity components. Based upon our observations, we argue that the warm absorber probably does not manifest itself in the form of photoionized clumps in pressure equilibrium with a surrounding wind. Instead, a model with a continuous distribution of column density versus ionization parameter gives an excellent fit to our data. From the shape of this distribution and the assumption that the mass loss through the wind should be smaller than the accretion rate onto the black hole, we derive upper limits to the solid angle as small as 10 −4 sr. From this we argue that the outflow occurs in density-stratified streamers. The density stratification across the stream then produces the wide range of ionization parameter observed in this source. We determine an upper limit of 0.3 M yr −1 for the mass loss from the galaxy due to the observed outflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.