We present high resolution X-ray spectra of 14 putative cooling-flow clusters of galaxies obtained with the Reflection Grating Spectrometer on XMM-Newton. The clusters in the sample span a large range of temperatures and mass deposition rates. Various of these spectra exhibit line emission from O VIII, Ne X, Mg XII & XI, Al XIII & XII, Si XIV & XIII, N VII, and C VI as well as all Fe L ions. The spectra exhibit strong emission from cool plasma at just below the ambient temperature, T 0 , down to T 0 /2, but also exhibit a severe deficit of emission, relative to the predictions of the isobaric cooling-flow model at lower temperatures (< T 0 /3). In addition, the bestresolved spectra show emission throughout the entire X-ray temperature range, but increasingly less emission at lower temperatures than the cooling-flow model would predict.These results are difficult to reconcile with simple prescriptions for distorting the emission measure distribution, e.g. by including additional heating or rapid cooling terms. We enumerate some theoretical difficulties in understanding the soft X-ray spectra of cooling-flows independent of the classic problem of the failure to detect the cooling-flow sink. Empirically, the differential luminosity distribution is consistent with being proportional to the temperature to the power of ≈ 1 to 2, instead of being independent of the temperature, as expected in the standard multi-phase model. The primary differences in the observed low temperature spectra are ascribed to differences in the ambient temperature.
Abstract. The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of ∼200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of ∼4 keV. The volume emission measure of any cool component (< 1 keV) is less than a few % of the hot component at the cluster center. A strong O viii Lyman α line was detected with the RGS from the cluster core. The O abundance and its ratio to Fe at the cluster center is 0.2-0.5 and 0.5-1.5 times the solar value, respectively.
Abstract. We present spatially resolved X-ray spectra taken with the EPIC cameras of XMM-Newton of a sample of 17 cooling clusters and three non-cooling clusters for comparison. The deprojected spectra are analyzed with a multi-temperature model, independent of any a priori assumptions about the physics behind the cooling and heating mechanisms. All cooling clusters show a central decrement of the average temperature, most of them of a factor of ∼2. Three clusters (Sérsic 159−3, MKW 3s and Hydra A) only show a weak temperature decrement, while two others (A 399 and A 2052) have a very strong temperature decrement. All cooling clusters show a weak pressure gradient in the core. More important, at each radius within the cooling region the gas is not isothermal. The differential emission measure distribution shows a strong peak near the maximum (ambient) temperature, with a steep decline towards lower temperatures, approximately proportional to T 3 , or alternatively a cut-off at about a quarter to half of the maximum temperature. In general, we find a poor correlation between radio flux of the central galaxy and the temperature decrement of the cooling flow. This is interpreted as evidence that except for a few cases (like the Hydra A cluster) heating by a central AGN is not the most common cause of weak cooling flows. We investigate the role of heat conduction by electrons and find that the theoretically predicted conductivity rates are not high enough to balance radiation losses. The differential emission measure distribution has remarkable similarities with the predictions from coronal magnetic loop models. Also the physical processes involved (radiative cooling, thermal conduction along the loops, gravity) are similar for clusters loops and coronal loops. If coronal loop models apply to clusters, we find that a few hundred loops per scale height should be present. The typical loop sizes deduced from the observed emission measure distribution are consistent with the characteristic magnetic field sizes deduced from Faraday rotation measurements.
We analyzed the ASCA X-ray data of 40 nearby clusters of galaxies, whose intraclustermedium temperature distributes in the range of 0.9-10 keV. We measured the Si and Fe abundances of the intracluster medium, spatially averaging over each cluster, but excluding the central ∼ 0.15h −1 50 Mpc region in order to avoid any possible abundance gradients and complex temperature structures. The Fe abundances of these clusters are 0.2-0.3 solar, with only weak dependence on the temperature of the intracluster medium, hence on the cluster richness. In contrast, the Si abundance is observed to increase from 0.3 to 0.6-0.7 solar from the poorer to richer clusters. These results suggest that the supernovae of both type-Ia and type-II significantly contribute to the metal enrichment of the intracluster medium, with the relative contribution of type-II supernovae increasing towards richer clusters. We suggest a possibility that a considerable fraction of type-II supernova products escaped from poorer systems.
Abstract. The cluster of galaxies Sérsic 159−03 was observed with the XMM-Newton X-ray observatory as part of the Guaranteed Time program. X-ray spectra taken with the EPIC and RGS instruments show no evidence for the strong cooling flow derived from previous X-ray observations. There is a significant lack of cool gas below 1.5 keV as compared to standard isobaric cooling flow models. While the oxygen is distributed more or less uniformly over the cluster, iron shows a strong concentration in the center of the cluster, slightly offset from the brightness center but within the central cD galaxy. This points to enhanced type Ia supernova activity in the center of the cluster. There is also an elongated iron-rich structure extending to the east of the cluster, showing the inhomogeneity of the iron distribution. Finally, the temperature drops rapidly beyond 4 from the cluster center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.