Arm movements made by newborn babies are usually dismissed as unintentional, purposeless, or reflexive. Spontaneous arm-waving movements were recorded while newborns lay supine facing to one side. They were allowed to see only the arm they were facing, only the opposite arm on a video monitor, or neither arm. Small forces pulled on their wrists in the direction of the toes. The babies opposed the perturbing force so as to keep an arm up and moving normally, but only when they could see the arm, either directly or on the video monitor. The findings indicate that newborns can purposely control their arm movements in the face of external forces and that development of visual control of arm movement is underway soon after birth.
Films of pigeons flying to a perch were analysed to test a theory of how speed of approach and timing of foot extension in preparation for landing are visually controlled. Rapid neural computation of distance to perch and of speed and deceleration would seem to be required. However, according to the theory, none of this is necessary. Simpler control is possible based solely on the value of the tau function of certain optic variables x, where the tau function of × is × divided by its rate of change; i.e. tau(x)=x/x˙˙ tau(x) is a first-order approximation of time to contact with the perch and so could be used for timing foot extension. Controlled braking is possible by simply keeping tau(x), the rate of change of tau(x), constant. The results indicated that pigeons did regulate their braking when approaching the perch by keeping tau(x) constant and initiated foot extension when tau(x) reached a threshold value of approximately 150 ms. They followed this procedure even when they had one eye covered, and so binocular vision was not necessary for regulating braking or timing foot extension. It is shown that an optic variable that the pigeons could be using is the width of the optic projection of the gap between foot and perch. It is further shown that they could be using the same optic variable for controlling the trajectory of their feet to contact the perch.
1. Using echolocation, bats move as gracefully as birds through the cluttered environment, suggesting common principles of optic and acoustic guidance. We tested the idea by analysing braking control of bats (Macroderma gigas) flying through a narrow aperture with eyes covered and uncovered. 2. Though braking control would seem to require rapid detection of distance and velocity and computation of deceleration, simpler control is possible using the tau function of any sensory variable S that is a power function of distance to aperture. Tau function of S is tau (S) = S/S (the dot means time derivative). Controlled braking is achievable by keeping tau (S) constant. 3. Previous experiments indicated the tau (S) constant procedure is followed by humans and birds in visually controlling braking. Analysis of the bats' flight trajectories indicated they too followed the braking procedure using echolocation. 4. The tau function of echo-delay or of echo-intensity or of angle subtended by directions of echoes from two points on the approach surface could be used to control braking. Aperture size was modulated during flight on some trials in an attempt to test between these possibilities, but the results were inconclusive.
Catching a moving object requires the ability to predict the future trajectory of the object. To test whether infants can use visual information predictively, reaching for a toy moving at different speeds was investigated in six infants around 11 months of age. The toy was occluded from view by a screen during the last part of its approach. Gaze arrived at the exit side of the screen and the hand started to move forward before the toy had disappeared behind the occluder; these actions were prospectively geared to certain times before the toy would reappear. In addition, hand-movement duration was found to be related to the time of reappearance of the toy--the information used to regulate duration of hand movement being picked up before the toy disappeared behind the occluder. In a longitudinal experiment, the development of predictive reaching was investigated in two infants between the ages of 20 and 48 weeks. At all ages studied, gaze anticipated the reappearance of the moving toy. However, anticipation with hand movement of the disappearance of the toy and the ability to gear actions prospectively to the time (instead of distance) the toy was away from certain points on the track developed relatively late and marked the transition to successfully catching faster-moving toys.
Electroencephalogram (EEG) was used in 8-month-old infants and adults to study brain electrical activity as a function of perception of structured optic flow and random visual motion. A combination of visual evoked potential (VEP) analyses and analyses of temporal spectral evolution (TSE, time-dependent spectral power) was carried out. Significant differences were found for the N2 component of VEP for optic flow versus random visual motion within and between groups. Both adults and infants showed shorter latencies for structured optic flow than random visual motion, and infants showed longer latencies, particularly for random visual motion, and larger amplitudes than adults. Both groups also showed significant differences in induced activity when TSE of the two motion stimuli (optic flow and random visual motion) was compared with TSE of a static dot pattern. Infants showed an induced decrease in the amplitudes in theta-band frequency, while adults showed an induced increase in beta-band frequency. Differences in induced activity for the two motion stimuli could, however, not be observed. Brain activity related to motion stimuli is different for infants and adults and the differences are observed both in VEPs and in induced activity of the EEG. To investigate how changes in locomotor development are related to accompanying changes in brain activity associated with visual motion perception, more data of infants with different experiences in self-produced locomotion are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.