Arm movements made by newborn babies are usually dismissed as unintentional, purposeless, or reflexive. Spontaneous arm-waving movements were recorded while newborns lay supine facing to one side. They were allowed to see only the arm they were facing, only the opposite arm on a video monitor, or neither arm. Small forces pulled on their wrists in the direction of the toes. The babies opposed the perturbing force so as to keep an arm up and moving normally, but only when they could see the arm, either directly or on the video monitor. The findings indicate that newborns can purposely control their arm movements in the face of external forces and that development of visual control of arm movement is underway soon after birth.
The theory of affordances proposes that organisms control their actions according to the fit between the organism and the environment. This study set out to examine the proposal that actions are attuned to environmental demands on the basis of body‐scaled information and how modifications to such actor–environment synergies might be influenced by speed of locomotion and locomotor ability. The paradigm task was walking and running under a barrier set at different heights. The subject groups comprised normal adults, nursery school children, cerebral palsied children, and infants with less than 6 weeks' independent walking experience. A body‐scaled critical point, at which they began to duck under the barrier, was observed for all but the infant subjects. In addition, the nursery school children were found to be more cautious in their behaviour than adults both when walking and running. The cerebral palsied children compensated for their poorer ability to control vertical position in space by allowing an even greater safety margin when passing under the barrier. The results provide support for an affordance theory of perception, in which body size, speed of locomotion and level of motor control are considered important properties of the actor–environment fit. ©1997 John Wiley & Sons, Ltd.
Electroencephalogram (EEG) was used in 8-month-old infants and adults to study brain electrical activity as a function of perception of structured optic flow and random visual motion. A combination of visual evoked potential (VEP) analyses and analyses of temporal spectral evolution (TSE, time-dependent spectral power) was carried out. Significant differences were found for the N2 component of VEP for optic flow versus random visual motion within and between groups. Both adults and infants showed shorter latencies for structured optic flow than random visual motion, and infants showed longer latencies, particularly for random visual motion, and larger amplitudes than adults. Both groups also showed significant differences in induced activity when TSE of the two motion stimuli (optic flow and random visual motion) was compared with TSE of a static dot pattern. Infants showed an induced decrease in the amplitudes in theta-band frequency, while adults showed an induced increase in beta-band frequency. Differences in induced activity for the two motion stimuli could, however, not be observed. Brain activity related to motion stimuli is different for infants and adults and the differences are observed both in VEPs and in induced activity of the EEG. To investigate how changes in locomotor development are related to accompanying changes in brain activity associated with visual motion perception, more data of infants with different experiences in self-produced locomotion are required.
A fundamental property of most animals is the ability to see whether an object is approaching on a direct collision course and, if so, when it will collide. Using high-density electroencephalography in 5- to 11-month-old infants and a looming stimulus approaching under three different accelerations, we investigated how the young human nervous system extracts and processes information for impending collision. Here, we show that infants' looming related brain activity is characterised by theta oscillations. Source analyses reveal clear localised activity in the visual cortex. Analysing the temporal dynamics of the source waveform, we provide evidence that the temporal structure of different looming stimuli is sustained during processing in the more mature infant brain, providing infants with increasingly veridical time-to-collision information about looming danger as they grow older and become more mobile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.