The storage of fruits and vegetables at low temperature near the freezing point is the foremost technology applied to retard postharvest ripening and to extend the shelf-life period of agricultural products. However, most tropical and subtropical produce is sensitive to chilling injury, which constitutes a set of physiological alterations caused by exposure to low temperatures for variable time periods, to the detriment of quality. This article is a thorough review of the physiological, hormonal and molecular mechanisms involved in the induction and development of this physiopathy. Also, the different postharvest technologies of a chemical, physical or biotechnological nature assayed in research or applied in the agro-food industry with the aim of inhibiting or delaying the emergence of chilling injury in sensitive plant produce of agricultural interest are reviewed.
The antioxidant properties of seven dessert spices (anise, cinnamon, ginger, licorice, mint, nutmeg, and vanilla) were compared with those of the common food antioxidants butylated hydroxyanisole (BHA) (E-320), butylated hydroxytoluene (BHT) (E-321), and propyl gallate (E-310). The influence of irradiation process on antioxidant activity was also evaluated. Mint and cinnamon exhibited a higher percentage of inhibition of oxidation than the other spices analyzed and the food antioxidants, as tested by the lipid peroxidation assay (LOO*). Nutmeg, anise, and licorice showed the strongest protection in the deoxyribose assay (OH*). Vanilla exhibited the highest antioxidant activity in the peroxidase-based assay (H2O2). Nutmeg, propyl gallate, ginger, and licorice improved the stability of oils (sunflower, corn, and olive) and fats (butter and margarine) against oxidation (110 degrees C Rancimat). Cinnamon was a better superoxide radical scavenger than the other analyzed spices and additives. When the Trolox equivalent antioxidant capacity (TEAC) assay was used to provide a ranking order of antioxidant activity, the result in decreasing order of antioxidant capacity was cinnamon approximately equal to propyl gallate > mint > anise > BHA > licorice approximately equal to vanilla > ginger > nutmeg > BHT. Irradiated samples did not show significant differences (p < 0.05) in the antioxidant activity with respect to the non-irradiated samples (1, 3, 5, and 10 kGy) in the assays used.
Compared to other melon types, Cantaloupe Charentais melons are highly aromatic with a major contribution to the aroma being made by aliphatic and branched esters. Using a transgenic line in which the synthesis of the plant hormone ethylene has been considerably lowered by antisense ACC oxidase mRNA (AS), the aliphatic ester pathway steps at which ethylene exerts its regulatory role were found. The data show that the production of aliphatic esters such as hexyl and butyl acetate was blocked in AS fruit and could be reversed by ethylene. Using fruit discs incubated in the presence of various precursors, the steps at which ester formation was inhibited in AS fruit was shown to be the reduction of fatty acids and aldehydes, the last step of acetyl transfer to alcohols being unaffected. However, treating AS fruit with the ethylene antagonist 1-methylcyclopropene resulted in about 50% inhibition of acetyl transfer activity, indicating that this portion of activity was ethylene-dependent and this was supported by the low residual ethylene concentration of AS fruit discs (around 2 microl l(-1)). In conclusion, the reduction of fatty acids and aldehydes appears essentially to be ethylene-dependent, whilst the last step of alcohol acetylation has ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyltransferases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.