In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro-and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up-or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.Legume plants have the unique capacity to enter a nitrogen-fixing endosymbiosis with prokaryotes of the genera Rhizobium, Sinorhizobium, Mesorhizobium, and Bradyrhizobium (collectively termed rhizobia). In exchange for plant photosynthates, the endosymbiotic rhizobia convert dinitrogen to ammonia that is supplied to the plant for incorporation into amino acids and ultimately proteins. Symbiotic nitrogen fixation thus allows legumes to grow and produce protein-rich seeds even on nitrogen-depleted soil.Endosymbiotic interactions represent a particular case of biotrophic interactions (Parniske, 2000) where the microorganism is enclosed in a host-derived membrane within transient organelles, termed symbiosomes. These are harbored in a specific organ that differentiates from root tissues, the root nodule. Nodule formation and bacterial infection are strictly controlled by the plant (Schultze and Kondorosi, 1998;Stougaard, 2000). First of all, in wild-type legumes, nodulation is possible only when alternative sources of assimilable nitrogen (nitrate or ammonium) are not available. Second, legumes allow invasion of a very limited range of bacteria species producing highly specific signals, the Nod factors (chitolipooligosaccharidic molecules whose perception is essential to trigger the plant symbiotic program), and proper cell wall components (notably exopolysaccharides and lipopolysaccharides). Finally, nodules and infection threads (tubular structures of plant origin) develop in defined places and limited numbers. This is regulated by the plant via a locally operating mechanism that involves the plant hormone ethylene and a systemically operating mechanism, with a mobile signal of as yet unknown nature . In our experimental system, the differentiation of a nitrogen-fixing nodule takes about 1 week. Such a functional nodule consists of central tissues (the distal meris...
Two genes (CM-AAT1 and CM-AAT2) with strong sequence homology (87% identity at the protein level) putatively involved in the formation of aroma volatile esters have been isolated from Charentais melon fruit. They belong to a large and highly divergent family of multifunctional plant acyl-transferases and show at most 21% identity to the only other fruit acyl-transferase characterized so far in strawberry. RT-PCR studies indicated that both genes were specifically expressed in fruit at increasing rates in the early and mid phases of ripening. Expression was severely reduced in ethylene-suppressed antisense ACC oxidase (AS) fruit and in wild-type (WT) fruit treated with the ethylene antagonist 1-MCP. Cloning of the two genes in yeast revealed that the CM-AAT1 protein exhibited alcohol acyl-transferase activity while no such activity could be detected for CM-AAT2 despite the strong homology between the two sequences. CM-AAT1 was capable of producing esters from a wide range of combinations of alcohols and acyl-CoAs. The higher the carbon chain of aliphatic alcohols, the higher the activity. Branched alcohols were esterified at differential rates depending on the position of the methyl group and the nature of the acyl donor. Phenyl and benzoyl alcohols were also good substrates, but activity varied with the position and size of the aromatic residue. The cis/trans configuration influenced activity either positively (2-hexenol) or negatively (3-hexenol). Because ripening melons evolve the whole range of esters generated by the recombinant CM-AAT1 protein, we conclude that CM-AAT1 plays a major role in aroma volatiles formation in the melon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.