<span>Variable Selection is the most essential function in predictive analytics, that reduces the dimensionality, without losing an appropriate information by selecting a few significant features of machine learning problems. The major techniques involved in this process are filter and wrapper methodologies. While filters measure the weight of features based on the attribute weighting criterion, the wrapper approach computes the competence of the variable selection algorithms. The wrapper approach is achieved by the selection of feature subgroups by pruning the feature space in its search space. The objective of this paper is to choose the most favourable attribute subset from the novel set of features, by using the combination method that unites the merits of filters and wrappers. To achieve this objective, an Improved Hybrid Feature Selection(IMFS) method is performed to create well-organized learners. The results of this study shows that the IMFS algorithm can build competent business applications, which have got a better precision than that of the constructed which is stated by the previous hybrid variable selection algorithms. Experimentation with UCI (University of California, Irvine) repository datasets affirms that this method have got better prediction performance, more robust to input noise and outliers, balances well with the available features, when performed comparison with the present algorithms in the literature review.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.