The current study aimed to evaluate the effect of increasing doses of garlic powder (GaP) on in vitro fermentation characteristics. Two successive 24-hour incubations were run, and gas production was measured at the end of each incubation period. Liquid samplings for each dose were reserved to determine ammonia nitrogen (NH 3 -N) and true organic matter degradability (TOMD). Partitioning factor (PF) was estimated as the ratio between TOMD and the gas produced at 24 hours of incubation. Microbial biomass (MBM) was estimated on the bases of truly degraded substrate and PF. Results showed that gas production increased (P <0.001) with the addition of 32 and 64 mg GaP. An increase (P <0.0001) in NH 3 -N concentration was recorded with 4 mg and 8 mg GaP compared with control, whereas adding 32 and 64 mg resulted in a NH 3 -N concentration equivalent to control (averaged 39.25 mg/100 ml). The propionate (C3) increased with doses and the highest proportion was noted with the addition of 8 mg GaP (P <0.001). The TOMD was similar for all the doses except for 64 mg GaP, where a slight but significant (P <0.001) increase was noted (77.7%). GaP did not affect PF and MBM values until the dose of 64 mg. It was concluded that GaP added to a ration composed of 50% roughages and 50% concentrate did not result in drastic modifications of in vitro rumen fermentation parameters, except at the highest dose (64 mg), where an increase of gas production, TODM, PF and MBM were noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.