We have examined the crystallographic structure of GaAs/InP interfaces obtained by wafer fusion following different procedures. Plan-view and cross-sectional transmission electron microscopy reveal that the interface is not only composed of a regular array of two sets of edge dislocations and is more complex than generally supposed. If a twist is created due to misalignment of the two substrates, the dislocations are not edge dislocations but also have a screw component. Dislocations for which the Burgers vectors have a component normal to the interface are also present. Those dislocations probably result from steps and some of them accommodate the tilt between the two substrates. Inclusions and voids as well as a low number of volume dislocations are present in all the samples. The observed volume dislocation density near the interface lies in the 105–107 cm−2 range and these volume dislocations may be associated with thermal mismatch. The origin of all these defects is discussed.
We have studied structural changes that occur during annealing of GaInNAs/GaAs multiple quantum wells grown by metalorganic vapor-phase epitaxy (MOVPE). Different thermal treatments led to an improved room-temperature photoluminescence (PL) intensity, but also to room-temperature PL peak splitting. This splitting is related to the appearance of compositional clustering as displayed by transmission electron microscopy (TEM). In addition to this, interfacial layers on each side of the wells have also been observed by TEM and their composition is discussed on the basis of high resolution x-ray diffraction studies. It is suggested that the interface layers are indium deficient, but enriched in nitrogen, degrading the optical quantum well performance and indicating a need for improved switching sequences in the MOVPE growth.
We have studied n- and p-type doping-induced performance degradation of AlAs/GaAs distributed Bragg reflectors (DBRs) for applications in vertical cavity lasers (VCLs). Based on high-accuracy optical reflectance and triple-axis x-ray diffraction measurements on a variety of differently doped DBR structures grown by metalorganic vapor-phase epitaxy, a fitting procedure was employed to extract the doping-dependent optical loss. A striking observation is that the reflectance of these DBRs is much more sensitive to n- than p-type doping incorporation. While in the latter case the loss can be well accounted for by intervalence-band and free-carrier absorption, additional loss mechanisms must be considered for n-type DBRs. We relate the losses to doping-enhanced interdiffusion effects resulting in increased interface scattering. These findings should have important consequences for the design of VCLs, demonstrating the importance of reduced n-type doping concentrations and/or growth temperatures, or the application of alternative device concepts, e.g., employing intracavity contacts.
This article reports on the fabrication and characterization of wafer fused heterojunctions between p-InP and p-GaAs. Secondary ion mass spectroscopy was used to characterize doping profiles across the interface as well as the interface contamination with oxygen or carbon. The crystalline quality of the fused material was characterized using cross section and plan-view transmission electron microscopy. The electrical properties of the fused interface were studied as a function of various doping elements such as Be and Zn in InP or Zn and C in GaAs as well as for different acceptor concentrations in GaAs. Finally, the electrical characteristics were analyzed using a numerical model that includes thermionic emission and tunneling across the heterobarrier.
Commercial laser Doppler perfusion monitors are calibrated using the perfusion value, i.e. the first order moment of the Doppler power spectrum, from a measurement in a standardized microsphere colloidal suspension under Brownian motion. The calibration perfusion value depends on several parameters of the suspension that are difficult to keep constant with adequate accuracy, such as the concentration, temperature and the microsphere size distribution. The calibration procedure itself may therefore introduce significant errors in the measured values.An altered calibration procedure, where the zero order moment is used is described and demonstrated in this paper. Since the above mentioned parameters only affect the frequency content of the Doppler power spectrum and not the total power, the zero order moment will be independent of those parameters. It is shown that the variation in the calibration value, as given by measurements on different scattering liquids with a wide range of scattering properties and temperatures, is only a few percent using the proposed method. For the conventional calibration procedure, this variation corresponds to an error introduced by merely a 1°C variation in the reference liquid temperature. The proposed calibration method also enables absolute level comparisons between measured and simulated Doppler power spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.