Indium−tin oxide (ITO) electrodes have been modified with both fluorinated alkyl and aryl phosphonic acids [n-hexylphosphonic acid (HPA) and n-octadecylphosphonic acid (ODPA); 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl phosphonic acid (FHOPA), pentafluorobenzyl phosphonic acid (PFBPA), and tetrafluorobenzyl-1,4-diphosphonic acid (TFBdiPA)]. These are modifiers designed to control both wetting properties toward nonpolar molecular solids and to provide a wide range of tunability in effective surface work function. The molecular nature of surface attachment and changes in electronic and wetting properties were characterized by X-ray photoelectron spectroscopy (XPS), UV-photoelectron spectroscopy (UPS), photoelastic modulation infrared reflection−absorption spectroscopy (PM-IRRAS), and contact angle measurements using both water and hexadecane. Interface dipoles from the PA modifiers contribute to shifts in the low kinetic energy regions of UPS spectra (local vacuum level shifts, which translate into changes in effective surface work function). We show that for ITO surfaces modified with FHOPA, and to a lesser extent with PFBPA, the high work function obtained by oxygen plasma cleaning can be maintained after modification, while decreasing the polar component of surface energy. This approach to oxide surface modification is a strategy that may be beneficial for the modification of transparent conducting oxide surfaces in both organic light emitting diodes and in organic solar cells, where oxide/organic compatibility can affect device performance.
We compare the near-surface composition and electroactivity of commercial indium tin oxide (ITO) thin films, activated by plasma cleaning or etching with strong haloacids, with ITO films that have been freshly deposited in high vacuum, before and after exposure to the atmosphere or water vapor. Conductive-tip AFM, X-ray photoelectron spectroscopy (XPS), and the electrochemistry of probe molecules in solution were used to compare the relative degrees of electroactivity and the near-surface composition of these materials. Brief etching of commercial ITO samples with concentrated HCl or HI significantly enhances the electrical activity of these oxides as revealed by C-AFM. XPS was used to compare the composition of these activated surfaces, focusing on the intrinsically asymmetric O 1s line shape. Energy-loss processes associated with photoemission from the tin-doped, oxygen-deficient oxides complicate the interpretation of the O 1s spectra. O 1s spectra from the stoichiometric indium oxide lattice are accompanied by higher-binding-energy peaks associated with hydroxylated forms of the oxide (and in some cases carbonaceous impurities) and overlapping photoemission associated with energy-loss processes. Characterization of freshly sputter-deposited indium oxide (IO) and ITO films, transferred under high vacuum to the surface analysis environment, allowed us to differentiate the contributions of tin doping and oxygen-vacancy doping to the O 1s line shape, relative to higher-binding-energy O 1s components associated with hydroxyl species and carbonaceous impurities. Using these approaches, we determined that acid activation and O2 plasma etching create an ITO surface that is still covered with an average of one to two monolayers of hydroxide. Both of these activation treatments lead to significantly higher rates of electron transfer to solution probe molecules, such as dimethyferrocene in acetonitrile. Solution electron-transfer events appear to occur at no more than 4x10(7) electroactive sites per cm2 (each with diameters of ca. 50-200 nm) (i.e., a small fraction of the geometric area of the electrode). Electron-transfer rates correlate with the near-surface tin dopant concentration, suggesting that these electroactive sites arise from near-surface tin enrichment.
We describe the modification of indium-tin oxide (ITO) electrodes via the chemisorption and electropolymerization of 6-{2,3-dihydrothieno[3,4-b]-1.4-dioxyn-2-yl methoxy}hexanoic acid (EDOTCA) and the electrochemical co-polymerization of 3,4-ethylenedioxythiophene (EDOT) and EDOTCA to form ultrathin films that optimize electron-transfer rates to solution probe molecules. ITO electrodes were first activated using brief exposure to strong haloacids, to remove the top approximately 8 nm of the electrode surface, followed by immediate immersion into a 50:50 EDOT/EDOTCA co-monomer solution. Potential step electrodeposition for brief deposition times was used to grow copolymer films of thickness 10-100 nm. The composition of these copolymer films was characterized by solution depletion studies of the monomers and atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy (reflection-absorption infrared spectroscopy (RAIRS)) of the product films. The spectroscopic data suggest that the composition of the copolymer approaches 80% EDOTCA when electropolymerization occurs from concentrated (10 mM) solutions. AFM characterization shows that electrodeposited poly(EDOT)/poly(EDOTCA) (PEDOT/PEDOTCA) films are quite smooth, with texturing on the nanometer scale. RAIRS studies indicate that these films consist of a combination of EDOTCA units with noninteracting -COOH groups and adjacent hydrogen-bonded -COOH groups. The EDOTCA-containing polymer chains appear to grow as columnar clusters from specific regions, oriented nearly vertically to the substrate plane. As they grow, these columnar clusters overlap to form a nearly continuous redox active polymer film. ITO activation and formation of these copolymer films enhances the electroactive fraction of the electrode surface relative to a nonactivated, unmodified "blocked" ITO electrode. Outer-sphere solution redox probes (dimethylferrocene) give standard rate coefficients, kS > or = 0.4 cm.s-1, at 10 nm thick copolymer films of PEDOT/PEDOTCA, which is 3 orders of magnitude greater than that on the unmodified ITO surface and approaches the values for kS seen on clean gold surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.