[1] Solar wind fast streams emanating from solar coronal holes cause recurrent, moderate intensity geomagnetic activity at Earth. Intense magnetic field regions called Corotating Interaction Regions or CIRs are created by the interaction of fast streams with upstream slow streams. Because of the highly oscillatory nature of the GSM magnetic field z component within CIRs, the resultant magnetic storms are typically only weak to moderate in intensity. CIR-generated magnetic storm main phases of intensity Dst < À100 nT (major storms) are rare. The elongated storm ''recovery'' phases which are characterized by continuous AE activity that can last for up to 27 days (a solar rotation) are caused by nonlinear Alfven waves within the high streams proper. Magnetic reconnection associated with the southward (GSM) components of the Alfvén waves is the solar wind energy transfer mechanism. The acceleration of relativistic electrons occurs during these magnetic storm ''recovery'' phases. The magnetic reconnection associated with the Alfvén waves cause continuous, shallow injections of plasma sheet plasma into the magnetosphere. The asymmetric plasma is unstable to wave (chorus and other modes) growth, a feature central to many theories of electron acceleration. It is noted that the continuous AE activity is not a series of substorm expansion phases. Arguments are also presented why these AE activity intervals are not convection bays. The auroras during these continuous AE activity intervals are less intense than substorm auroras and are global (both dayside and nightside) in nature. Owing to the continuous nature of this activity, it is possible that there is greater average energy input into the magnetosphere/ ionosphere system during far declining phases of the solar cycle compared with those during solar maximum. The discontinuities and magnetic decreases (MDs) associated with interplanetary Alfven waves may be important for geomagnetic activity. In conclusion, it will be shown that geomagnetic storms associated with high-speed streams/CIRs will have the same initial, main, and ''recovery'' phases as those associated with ICME-related magnetic storms but that the interplanetary causes are considerably different.
Abstract. The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90 • particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.Correspondence to: U. Mall (mall@linmpi.mpg.de) Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath) The instrumentThe RAPID spectrometer (Research with Adaptive Particle Imaging Detectors), described in detail by Wilken et al. (1995), is an advanced particle detector for the analysis of suprathermal plasma distributions in the energy range from 20-400 keV for electrons, 30 keV-1500 keV for hydrogen, and 10 keV/nucleon-1500 keV for heavier ions. Innovative detector concepts, in combination with pinhole acceptance, allow for the measurement of angular distributions over a range of 180 • in the polar angle for electrons and ions. Identification of the ion species is based on a two-dimensional analysis of the particle's velocity and energy. Electrons are identified by the well-known energy-range relationship. Table 1 list the main parameters of the RAPID instrument.The energy signals in RAPID are analyzed in 8 bit ADCs. With a mapping process the 256 channels are reduced to 8 channels in the case of the ion sensor and into 9 channels in the case of the electron sensor. The resulting energy channel limits are listed in Table 2.
[1] We present coordinated ground satellite observations of solar wind compressionrelated dayside electromagnetic ion cyclotron (EMIC) waves from 25 September 2005. On the ground, dayside structured EMIC wave activity was observed by the CARISMA and STEP magnetometer arrays for several hours during the period of maximum compression. The EMIC waves were also registered by the Cluster satellites for half an hour, as they consecutively crossed the conjugate equatorial plasmasphere on their perigee passes at L ∼ 5. Simultaneously, conjugate to Cluster, NOAA 17 passed through field lines supporting EMIC wave activity and registered a localized enhancement of precipitating protons with energies >30 keV. Our observations suggest that generation of the EMIC waves and consequent loss of energetic protons may last for several hours while the magnetosphere remains compressed. The EMIC waves were confined to the outer plasmasphere region, just inside the plasmapause. Analysis of lower-frequency Pc5 waves observed both by the Cluster electron drift instrument (EDI) and fluxgate magnetometer (FGM) instruments and by the ground magnetometers show that the repetitive structure of EMIC wave packets observed on the ground cannot be explained by the ultra low frequency (ULF) wave modulation theory. However, the EMIC wave repetition period on the ground was close to the estimated field-aligned Alfvénic travel time. For a short interval of time, there was some evidence that EMIC wave packet repetition period in the source region was half of that on the ground, which further suggests bidirectional propagation of wave packets.Citation: Usanova, M. E., et al. (2010), Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation,
[1] During geomagnetic storms the flux of radiation belt electrons can increase, decrease, or stay constant, depending on the competition between acceleration and loss mechanisms. We focus on loss of relativistic electrons. We use low-altitude polar-orbiting spacecraft and analyze fluxes of tens to hundreds of keV protons and relativistic (>1.5 MeV) electrons during a moderate geomagnetic storm, with a long-lasting recovery phase (4-5 d). Using data from four local times, we find that the loss of relativistic electrons is confined within the anisotropic proton zone and that a spatially limited loss of relativistic electrons is spatially collocated with increased loss of protons. The proton pitch angle distributions within these peaks are consistent with moderate to strong pitch angle scattering due to electromagnetic ion cyclotron (EMIC) waves. The loss of relativistic electrons collocated with protons is found at all four local times considered (0300, 0700, 1400, 1700 MLT). Since anisotropic proton distributions can under certain conditions generate EMIC waves, we find strong indications that the observed relativistic electrons are scattered into the atmospheric loss cone by EMIC waves. EMIC wave scattering is less efficient at high equatorial pitch angles but very efficient near the loss cone, thereby controlling the loss rate of relativistic electrons to the atmosphere. Our observations in and near the loss cone support theoretical work suggesting that EMIC waves can cause scattering loss to the atmosphere of relativistic electrons over the course of a geomagnetic storm.Citation: Sandanger, M., F. Søraas, K. Aarsnes, K. Oksavik, and D. S. Evans (2007), Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.