[1] Electromagnetic ion cyclotron (EMIC) waves are transverse plasma waves generated by anisotropic proton distributions with T perp > T para . They are believed to play an important role in the dynamics of the ring current and potentially, of the radiation belts. Therefore it is important to know their localization in the magnetosphere and the magnetospheric and solar wind conditions which lead to their generation. Our earlier observations from three Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes demonstrated that strong magnetospheric compressions associated with high solar wind dynamic pressure (P dyn ) may drive EMIC waves in the inner dayside magnetosphere, just inside the plasmapause. Previously, magnetospheric compressions were found to generate EMIC waves mainly close to the magnetopause. In this work we use an automated detection algorithm of EMIC Pc1 waves observed by THEMIS between May 2007 to December 2011 and present the occurrence rate of those waves as a function of L-shell, magnetic local time (MLT), P dyn , AE, and SYMH. Consistent with earlier studies we find that the dayside (sunward of the terminator) outer magnetosphere is a preferential location for EMIC activity, with the occurrence rate in this region being strongly controlled by solar wind dynamic pressure. High EMIC occurrence, preferentially at 12-15 MLT, is also associated with high AE. Our analysis of 26 magnetic storms with Dst < À50 nT showed that the storm-time EMIC occurrence rate in the inner magnetosphere remains low (<10%). This brings into question the importance of EMIC waves in influencing energetic particle dynamics in the inner magnetosphere during disturbed geomagnetic conditions. Citation: Usanova, M. E., I. R. Mann, J. Bortnik, L. Shao, and V. Angelopoulos (2012), THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure,
We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90°pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2-8 MeV) electron loss but which is confined to pitch angles below around 45°and not affecting the core distribution.
This review describes the infrastructure and capabilities of the expanded and upgraded Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) magnetometer array in the era of the THEMIS mission. Formerly operated as the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array until 2003, CARISMA capabilities have been extended with the deployment of additional fluxgate magnetometer stations (to a total of 28), the upgrading of the fluxgate magnetometer cadence to a standard data product of 1 sample/s (raw sampled 8 samples/s data stream available on request), and the deployment of a new network of 8 pairs of induction coils (100 samples per second). CARISMA data, GPS-timed and backed up at remote field stations, is collected using Very Small Aperture Terminal (VSAT) satellite internet in real-time providing a real-time monitor for magnetic activity on a continent-wide scale. Operating under the magnetic footprint of the THEMIS probes, data from 5 CARISMA stations at 29-30 samples/s also forms part of the formal THEMIS ground-based observatory (GBO) datastream. In addition to technical details, in this review we also outline some of the scientific capabilities of the CARISMA array for addressing all three of the scientific objectives of the THEMIS mission, namely: 1. Onset and evolution of the macroscale substorm instability, 414 I.R. Mann et al.2. Production of storm-time MeV electrons, and 3. Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause. We further discuss some of the compelling questions related to these three THEMIS mission science objectives which can be addressed with CARISMA.
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.