We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90°pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2-8 MeV) electron loss but which is confined to pitch angles below around 45°and not affecting the core distribution.
Radiation in space was the first discovery of the space age. Earth's radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet 1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to waveparticle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies 2 , with the additional medium narrow belt (longlived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Earth's atmosphere. Here we show that ultrarelativistic electrons can stay trapped in the outer zone and remain unaffected by the very-low-frequency plasma waves for a very long time owing to a lack of scattering into the atmosphere. The absence of scattering is explained as a result of ultrarelativistic particles being too energetic to resonantly interact with waves at low latitudes. This study shows that a different set of physical processes determines the evolution of ultrarelativistic electrons. Over half a century ago, on the basis of the observations of the first US satellite mission Explorer 1, James Van Allen and colleagues from the University of Iowa discovered the inner radiation belt 3. The inner belt is very stable and consists of electrons and protons trapped between 1.2 and 2.0 Earth radii. Later, USSR and US missions showed that the radiation belts exhibited a two-zone structure 1,4 ; there is an additional outer belt present at higher distances (∼ > 3R E). A region of relatively low electron fluxes separating the belts is usually referred to as the slot region. The outer belt consists of energetic electrons and is highly dynamic and variable. It is produced by the continuous acceleration of electrons during inward transport (second-order Fermi acceleration and betatron acceleration) 5-7 and local acceleration due to resonance with plasma waves 8-10. The energetic electrons are continuously lost to the atmosphere and also regularly depleted as a result of losses to the magnetopause (the boundary of the Earth's magnetosphere) 11-13. The two-zone structure has been observed to be altered owing to very unusual acceleration events. Observation of the so-called Halloween superstorm showed that electrons can be accelerated to relativistic energies in the slot region between the two belts. The extreme filling of the slot region in October-November 2003 was
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.