Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.
[1] Whistler mode chorus waves are receiving increased scientific attention due to their important roles in both acceleration and loss processes of radiation belt electrons. A new global survey of whistler-mode chorus waves is performed using magnetic field filter bank data from the THEMIS spacecraft with 5 probes in near-equatorial orbits. Our results confirm earlier analyses of the strong dependence of wave amplitudes on geomagnetic activity, confinement of nightside emissions to low magnetic latitudes, and extension of dayside emissions to high latitudes. An important new finding is the strong occurrence rate of chorus on the dayside at L > 7, where moderate dayside chorus is present >10% of the time and can persist even during periods of low geomagnetic activity.
Plasmaspheric hiss is a type of electromagnetic wave found ubiquitously in the dense plasma region that encircles the Earth, known as the plasmasphere. This important wave is known to remove the high-energy electrons that are trapped along the Earth's magnetic field lines, and therefore helps to reduce the radiation hazards to satellites and humans in space. Numerous theories to explain the origin of hiss have been proposed over the past four decades, but none have been able to account fully for its observed properties. Here we show that a different wave type called chorus, previously thought to be unrelated to hiss, can propagate into the plasmasphere from tens of thousands of kilometres away, and evolve into hiss. Our new model naturally accounts for the observed frequency band of hiss, its incoherent nature, its day-night asymmetry in intensity, its association with solar activity and its spatial distribution. The connection between chorus and hiss is very interesting because chorus is instrumental in the formation of high-energy electrons outside the plasmasphere, whereas hiss depletes these electrons at lower equatorial altitudes.
[1] Electromagnetic ion cyclotron (EMIC) waves are transverse plasma waves generated by anisotropic proton distributions with T perp > T para . They are believed to play an important role in the dynamics of the ring current and potentially, of the radiation belts. Therefore it is important to know their localization in the magnetosphere and the magnetospheric and solar wind conditions which lead to their generation. Our earlier observations from three Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes demonstrated that strong magnetospheric compressions associated with high solar wind dynamic pressure (P dyn ) may drive EMIC waves in the inner dayside magnetosphere, just inside the plasmapause. Previously, magnetospheric compressions were found to generate EMIC waves mainly close to the magnetopause. In this work we use an automated detection algorithm of EMIC Pc1 waves observed by THEMIS between May 2007 to December 2011 and present the occurrence rate of those waves as a function of L-shell, magnetic local time (MLT), P dyn , AE, and SYMH. Consistent with earlier studies we find that the dayside (sunward of the terminator) outer magnetosphere is a preferential location for EMIC activity, with the occurrence rate in this region being strongly controlled by solar wind dynamic pressure. High EMIC occurrence, preferentially at 12-15 MLT, is also associated with high AE. Our analysis of 26 magnetic storms with Dst < À50 nT showed that the storm-time EMIC occurrence rate in the inner magnetosphere remains low (<10%). This brings into question the importance of EMIC waves in influencing energetic particle dynamics in the inner magnetosphere during disturbed geomagnetic conditions. Citation: Usanova, M. E., I. R. Mann, J. Bortnik, L. Shao, and V. Angelopoulos (2012), THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.