Phosphorus (P) sorption of light weight aggregate, Filtralite P has been examined through a box experiment which imitates a horizontal subsurface flow wetland system. The results showed that after the P breakthrough, the outlet P concentration increased with time according to the amount of P applied. Small scale boxes with a high inlet P concentration (15 ppm) and high loading rate (5-2.5 L d(-1)) reached 90% saturation level relatively quickly (after about 150 days of operation), while the boxes with low hydraulic loading rate (1.25 L day(-1)) were 70-90% saturated after 18 months of operation. The total P removal was dependent on pH, Ca, and the inlet P concentrations, but was independent of the hydraulic loading rate. Extraction of total P from the saturated filter material showed that the sorbed P accumulated within the inlet section of the box and decreased gradually towards the outlet as well as towards the bottom layer. Even after large amounts of Ca had leached out of the system, Filtralite P still had a very high P removal capacity. After resting periods the P sorption capacity of the material was regenerated, the P concentration in the effluent decreased by 22-53%.
Horizontal subsurface flow constructed wetlands have proven their efficiency in treating wastewater and removing the pollutants of concern. Treatment efficiency depends on the wastewater residence time, which is a function of the hydraulic loading and the physical conditions of the constructed filter system, which can be described with effective parameters such as: hydraulic conductivity, porosity, dispersivity etc. Because spatial variability is often scale dependent, these effective parameters may be affected by the scale of the system being studied. In this paper the results of tracer experiments in constructed filters using saturated horizontal flow at three scales (small and medium lab scales and full-scale system) using the same filter media is reported. Light-weight aggregate (filter media termed Filtralite-P) was used at all scales. Increasing the scale was associated with increasing dispersivity, meanwhile hydraulic conductivity experienced dramatic reduction and variation by increasing the examined scale. Observed changes in the hydraulic parameters indicate that heterogeneity at different scales should be taken into account when the performance of LWA filters are evaluated from small-scale experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.