Twenty eight moderately water-soluble to insoluble chromium (VI) compounds, such as zinc and lead chromate, industrial and laboratory synthesized pigments, and the analytical reagents strontium, barium and calcium chromate, were physicochemically characterized and studied for cytotoxicity and morphological transformation in cultured Syrian hamster embryo (SHE) cells. In vivo validation of malignancy of transformed SHE cells was performed. A high physicochemical diversity among the complex chromium pigments was revealed. The solubility of the compounds was greatly increased after incubation in a complete medium and even higher under cell culture conditions. The cytotoxic effects appeared to be due principally to extracellular solubilized chromium because the most solubilized compounds. Zn, Ca and Sr chromates, were equitoxic at about the same Cr concentration treatment and 8-fold more cytotoxic than less soluble compounds such as some Pb chromates and Ba chromate. However, certain physicochemical properties of lead chromate pigments could also influence their cytotoxic activity. All test compounds were, in a dose-dependent manner, efficient in inducing morphological transformation of SHE cells. Many of the Cr pigments, although physicochemically different, were similarly effective in transformation induction. Nevertheless, compounds among Zn and Pb chromates had various transforming potencies. Ba chromate was the least active in inducing transformation. Certain physicochemical properties could mediate the transforming activity but no particular relationship could be established between any one of the physicochemical parameters and the transforming potency. Cloned morphologically-transformed colonies of SHE cells were grown in soft agar medium and showed true neoplastic behaviour by tumour formation in syngeneic animals. These results show that various chromate pigments containing either Zn or Pb, of medium to very low aqueous solubility, induced neoplastic transformation of SHE cells.
In order to evaluate the effect of thermal treatments on the surface reactivity and carcinogenic potential of diatomaceous earth (DE) products, the physicochemical features of some specimens--derived by heating the same original material--were compared with their cytotoxic and transforming potency. The samples were an untreated DE (amorphous) progressively heated in the laboratory at 900 degrees C (DE 900) and 1200 degrees C (DE 1200) and a commercial product manufactured from the same DE (Chd) from which the finer fraction (< 10-microm diameter) was separated (Chd-F). Quartz (Min-U-Sil 5) and a vitreous silica (amorphous) smoothed up with hydrofluoric acid and were used as positive and negative controls, respectively. All samples were analyzed for their degree of crystallization, for their ability to release free radicals and reactive oxygen species, and for their cytotoxic and transforming potencies in Syrian hamster embryo (SHE) cells. X-ray diffractometry showed that DE 900, like DE, was still amorphous, whereas DE 1200 as well as the commercial product (Chd) were partially crystallized into cristobalite. The ability of the dust to release hydroxyl (*OH) radicals in the presence of hydrogen peroxide, as revealed by the spin-trapping technique, was as follows: Chd-F, DE 1200 > Chd > DE 900 > DE, suggesting that on heating, the surface acquires a higher potential for free radical release. Most of the silica samples generated COO* radicals from the formate ion, following homolytic rupture of the carbon-hydrogen bond, in the presence of ascorbic acid. A concentration-dependent decrease in cell proliferation and colony-forming efficiency was observed in SHE cultures treated with Chd-F, Chd, and DE. Heating abolished DE cytotoxicity but conferred a transforming ability to thermal treated particles. DE was the only sample that did not induce morphological transformation of cells. According to their transformation capacity, the samples were classified as follows: Chd-F > Chd, DE 1200 > DE 900 >> DE. Taken together, the reported results suggest that (1) the transforming potential of a biogenic amorphous silica is related to the thermal treatment that transforms the original structure in cristobalite and generates surface active sites; (2) the reactivity of samples in releasing *OH radicals correlates to their transforming ability; (3) the finer fraction of the commercial product is significantly more toxic and transforming than the coarse dust; and (4) opposite to silica dusts of mineral origin, which loose both cytotoxicity and transforming ability upon heating, heated diatomite acquires a cell-transforming potency. DE products should be thus considered a set apart of silica-based potentially toxic materials.
The nature of occupational risks and hazards in industries that produce or use synthetic amorphous silica (SAS) nanoparticles is still under discussion. Manufactured SAS occur in amorphous form and can be divided into two main types according to the production process, namely, pyrogenic silica (powder) and precipitated silica (powder, gel or colloid). The physical and chemical properties of SAS may vary in terms of particle size, surface area, agglomeration state or purity, and differences in their toxicity potential might therefore be expected. The aim of this study was to compare the cytotoxicity and genotoxicity of representative manufactured SAS samples in Chinese hamster lung fibroblasts (V79 cells). Five samples from industrial SAS producers were evaluated, that is, two pyrogenic SAS powders (with primary particle sizes of 20 nm and 25/70 nm), one precipitated SAS powder (20 nm) and two precipitated SAS colloids (15 and 40/80 nm). V79 cell cultures were treated with different concentrations of SAS pre-dispersed in bovine serum albumin -water medium. Pyr (pyrogenic) 20, Pre (precipitated) 20 and Col (colloid) 15 significantly decreased the cell viability after 24 h of exposure, whilst Pyr 25/70 and Col 40/80 had negligible effects. The cytotoxicity of Pyr 20, Pre 20 and Col 15 was revealed by the induction of apoptosis, and Pyr 20 and Col 15 also produced DNA damage. However, none of the SAS samples generated intracellular reactive oxidative species, micronuclei or genomic mutations in V79 cells after 24 h of exposure. Overall, the results of this study show that pyrogenic, precipitated and colloidal manufactured SAS of around 20 nm primary particle size can produce significant cytotoxic and genotoxic effects in V79 cells. In contrast, the coarser-grained pyrogenic and colloid SAS (approximately 50 nm) yielded negligible toxicity, despite having been manufactured by same processes as their finer-grained equivalents. To explain these differences, the influence of particle agglomeration and oxidative species formation is discussed.
Carbon nanotubes (CNTs) belong to a specific class of nanomaterials with unique properties. Because of their anticipated use in a wide range of industrial applications, their toxicity is of increasing concern. In order to determine whether specific physicochemical characteristics of CNTs are responsible for their toxicological effects, we investigated the cytotoxic and genotoxic effects of eight CNTs representative of each of the commonly encountered classes: single- SW-, double- DW-, and multiwalled (MW) CNTs, purified and raw. In addition, because most previous studies of CNT toxicity were conducted on immortalized cell lines, we decided to compare results obtained from V79 cells, an established cell line, with results from SHE (Syrian hamster embryo) cells, an easy-to-handle normal cell model. After 24 hours of treatment, MWCNTs were generally found to be more cytotoxic than SW- or DWCNTs. MWCNTs also provoked more genotoxic effects. No correlation could be found between CNT genotoxicity and metal impurities, length, surface area, or induction of cellular oxidative stress, but genotoxicity was seen to increase with CNT width. The toxicity observed for some CNTs leads us to suggest that they might also act by interfering with the cell cycle, but no significant differences were observed between normal and immortalized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.