Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the design of a novel 24-pin dry electrode made from polyurethane and coated with Ag/AgCl. A textile cap system holds 97 of these dry electrodes. An EEG study with 20 volunteers compares the 97-channel dry EEG cap with a conventional 128-channel wet EEG cap for resting state EEG, alpha activity, eye blink artifacts and checkerboard pattern reversal visual evoked potentials. All volunteers report a good cap fit and good wearing comfort. Average impedances are below 150 kΩ for 92 out of 97 dry electrodes, enabling recording with standard EEG amplifiers. No significant differences are observed between wet and dry power spectral densities for all EEG bands. No significant differences are observed between the wet and dry global field power time courses of visual evoked potentials. The 2D interpolated topographic maps show significant differences of 3.52 and 0.44% of the map areas for the N75 and N145 VEP components, respectively. For the P100 component, no significant differences are observed. Dry multipin electrodes integrated in a textile EEG cap overcome the principle limitations of wet electrodes, allow rapid application of EEG multichannel caps by non-trained persons, and thus enable new fields of application for multichannel EEG acquisition.
The main objective of this work is the preparation of decorative zirconium oxynitride, ZrOxNy, thin films by dc reactive magnetron sputtering. Film properties were analyzed as a function of the reactive gas flow and were correlated with the observed structural changes. Measurements showed a systematic decrease in the deposition rate with the increase of the reactive gas flow and revealed three distinct modes: (i) a metallic mode, (ii) a transition mode (subdivided into three zones), and (iii) an oxide mode. The measurements of target potential were also consistent with these changes, revealing a systematic increase from 314to337V. Structural characterization uncovered different behaviors within each of the different zones, with a strong dependence of film texture on the oxygen content. These structural changes were also confirmed by resistivity measurements, whose values ranged from 250to400μΩcm for low gas flows and up to 106μΩcm for the highest flow rates. Color measurements in the films revealed a change from bright yellow at low reactive gas flows to red brownish at intermediate flows and dark blue for the films prepared at the highest flows. Hardness measurements gave higher values for the region where larger grain sizes were found, showing that the grain growth hardening effect is one of the main parameters that can help explain the observed behavior. Also the peak intensity ratio and the residual stress states were found to be important factors for explaining this behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.