The aim of this study was to determine the economic damage threshold of Pigweed redroot for corn regarding its density. An experiment was conducted at the Agriculture Research station of Islamic Azad University branch of Gonabad during 2006. The experiment was carried out as a factorial in a randomized complete block design with three replications. In the experiments, the factors included corn (var. 704) densities of 7.5, 8.5 and 9.5 plants m-2 and pigweed redroot densities of 0, 2, 4, 6 and 8 plants m-2. The increase in Pigweed redroot density, decrease in crop grain and biomass yield components such as ear length, ear diameter, number of grains per row, row number, grain number in ear, grain yield and biological yield of corn, decreased. Also, with an increase in corn density, the number of grain per rows, row number, grain yield and biological yield of corn increased. The economic thresholds density of Pigweed redroot was 0.09 to 0.13 plants m-2 in corn different densities, and increased with corn density increases.
The effects of irrigation regimes (full irrigation and water-withholding at anthesis) and post-anthesis nitrogen supplies (LN: 0, MN: 20 and HN: 40 kg N/ha) on grain yield and its components in winter wheat were studied, with attention to biomass gain by assimilation and its loss by respiration. Fully-irrigated wheat responded to N fertilization with increased grain number (GN) and decreased grain weight (GW) and achieved similar grain yields (5.2 to 5.5 t/ha) at different N supplies. However, drought-stressed wheat responded to N with higher GN without significant changes in GW, and achieved higher grain yields (2.7 vs. 3.3 t/ha) with HN compared to LN. Net assimilation rates during grain filling (NARg) increased with increasing post-anthesis N fertilization for drought-stressed wheat (NARg: 3.8 and 4.5 g/m/day for LN and HN). Apparent whole-plant respiration (R A ) was not influenced by increased post-anthesis N fertilizer. Thus, in drought-stressed wheat, the total biomass and straw yield at maturity were increased by increasing N supply. These results suggest that high N supply at anthesis satisfied the grains' increased demand for N by increasing post-floral assimilation, and the surplus assimilates not only compensated for the low-N-induced biomass loss by respiration but may also have increased the straw yield.
ABSTRACT. Cumin (Cuminum cyminum L.) is one of the most important pharmaceutical plants. As a considerable portion of existing agricultural lands in arid regions is exposed to aridity and finally to salinity, we need to study the effects of salinity on the growth and production of agronomical products. For this purpose, an agricultural experiment in the form of split plots with three replications was conducted in 2011 at the Islamic Azad University, Gonabad Branch, Iran, in the longitude of 58°, 50', latitude of 34°, 54', and altitude of 940 m from the sea level. At the main plot, four salinity levels (2,5,8 and 11ds/m) and at the sub plot, the growth stages of stress implementation (including stress in establishment, flowering, and seed filling stage), were located at random. The results showed that the salinity rate had significant impact on fresh weight, dry weight, height , percentage of essence, seed and biological yield. With the increase in salinity from 2 to 11ds/m, a significant decrease in all vegetative and reproductive characteristics were observed. The most sensitive growth stages of plant to salt stress, during vegetative and reproductive period were the stage of establishment and flowering, respectively. There was no interaction between the growth stage of plant and salinity rate, except for seed yield and harvest index.
In hot and arid regions, drought stress is considered as one of the main reasons for yield reduction. To study the effect of drought stress, iron and zinc spray on the yield and yield components of wheat, an experiment was carried out during the crop seasons of 2010 and 2011 on Shahid Salemi Farm in Ahwaz as a split factorial within randomized complete block design with three replications. The main plots with irrigation factor and three levels were considered: Level A) full irrigation, Level B) stopping irrigation at pollination step, and Level C) stopping irrigation at the seed filling stage. Subsidiary plots were considered with and without iron and zinc spray. Influencing the seed filling process, in interaction with iron, wich is an important leaf's chlorophyll cation, zinc increased the seed yield. The drought stress reduced the thousand kernels weight (TKW) and the number of seeds per spike increased about 24% and 8.5% more than the one of control treatment, respectively. Using iron, as compared with control treatment, causes the increase of thousand kernels weight from 45.71 to 46.83 grams and the increase of spike from 49.51 to 51.73. Zinc spray increased seed yield and thousand kernels weight. The results obtained from the present research showed that iron and zinc spray has fairly improved the effects caused by drought stress.
The aim of this study was to model light interception and distribution in the mixed canopy of Common cocklebur (Xanthium stramarium) with corn. An experiment was conducted in factorial arrangement on the basis of randomized complete blocks design with three replications in Gonabad in 2006-2007 and 2007-2008 seasons. The factors used in this experiment include corn density of 7.5, 8.5 and 9.5 plants per meter of row and density of Common cocklebur of zero, 2, 4, 6 and 8 plants per meter of row. INTERCOM model was used through replacing parabolic function with triangular function of leaf area density. Vertical distribution of the species' leaf area showed that corn has concentrated the most leaf area in layer of 80 to 100 cm while Common cocklebur has concentrated in 35-50 cm of canopy height. Model sensitivity analysis showed that leaf area index, species' height, height where maximum leaf area is seen (hm), and extinction coefficient have influence on light interception rate of any species. In both species, the distribution density of leaf area at the canopy length fit a triangular function, and the height in which maximum leaf area was observed was changed by change in density. There was a correlation between percentage of the radiation absorbed by the weed and percentage of corn seed yield loss (r² = 0.89). Ideal type of corn was determined until the stage of tasseling in competition with weed. This determination indicates that the corn needs more height and leaf area, as well as less extinction coefficient to successfully fight against the weed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.