Styrene oxide and 2-phenylethanol metabolism in the styrene-degrading Xanthobacter sp. strain 124X was shown to proceed via phenylacetaldehyde and phenylacetic acid. In cell extracts 2-phenylethanol was oxidized by a phenazine methosulfate-dependent enzyme, probably a pyrroloquinoline quinone enzyme. Xanthobacter sp. strain 124X also contains a novel enzymatic activity designated as styrene oxide isomerase. Styrene oxide isomerase catalyzes the isomerization of styrene oxide to phenylacetaldehyde. The enzyme was partially purified and shown to have a very high substrate specificity. Of the epoxides tested, styrene oxide was the only substrate transformed. The initial step in styrene metabolism in Xanthobacter sp. strain 124X is oxygen dependent and probably involves oxidation of the aromatic nucleus.
The presence of the synthetic nonionic surfactants Triton X-100, Tergitol NPX, Brij 35, and Igepal CA-720 resulted not only in increased apparent solubilities but also in increased maximal rates of dissolution of crystalline naphthalene and phenanthrene. A model based on the assumption that surfactant micelles are formed and act as a separate phase underestimated the dissolution rates; this led to the conclusion that surfactants present at concentrations higher than the critical micelle concentration affect the dissolution process. This conclusion was confirmed by the results of batch growth experiments, which showed that the rates of biodegradation of naphthalene and phenanthrene in the dissolution-limited growth phase were increased by the addition of surfactant, indicating that the dissolution rates were higher than the rates in the absence of surfactant. In activity and growth experiments, no toxic effects of the surfactants at concentrations up to 10 g liter ؊1 were observed. Substrate present in the micellar phase was shown to be not readily available for degradation by the microorganisms. This finding has important consequences for the application of (bio)surfactants in biological soil remediation.
It is demonstrated that bacterial growth on crystalline or adsorbed polycyclic aromatic hydrocarbons can result in a linear increase in biomass concentration. A simple mathematical approach is presented, showing that under these circumstances mass transfer from the solid phase to the liquid phase is rate-limiting for growth.
Compound-specific carbon and hydrogen isotope analysis was used to investigate biodegradation of benzene and ethylbenzene in contaminated groundwater at Dow Benelux BV industrial site. delta13C values for dissolved benzene and ethylbenzene in downgradient samples were enriched by up to 2+/-0.5 per thousand, in 13C, compared to the delta13C value of the source area samples. delta2H values for dissolved benzene and ethylbenzene in downgradient samples exhibited larger isotopic enrichments of up to 27+/-5 per thousand for benzene and up to 50+/-5 per thousand for ethylbenzene relative to the source area. The observed carbon and hydrogen isotopic fractionation in downgradient samples provides evidence of biodegradation of both benzene and ethylbenzene within the study area at Dow Benelux BV. The estimated extents of biodegradation of benzene derived from carbon and hydrogen isotopic compositions for each sample are in agreement, supporting the conclusion that biodegradation is the primary control on the observed differences in carbon and hydrogen isotope values. Combined carbon and hydrogen isotope analyses provides the ability to compare biodegradation in the field based on two different parameters, and hence provides a stronger basis for assessment of biodegradation of petroleum hydrocarbon contaminants.
Compound-specific isotope analysis (CSIA) enables quantification of biodegradation by use of the Rayleigh equation. The Rayleigh equation fails, however, to describe the sequential degradation of chlorinated aliphatic hydrocarbons (CAHs) involving various intermediates that are controlled by simultaneous degradation and production. This paper shows how isotope fractionation during sequential degradation can be simulated in a 1D reactive transport code (PHREEQC-2). 12 C and 13 C isotopes of each CAH were simulated as separate species, and the ratio of the rate constants of the heavy to light isotope equaled the kinetic isotope fractionation factor for each degradation step. The developed multistep isotope fractionation reactive transport model (IF-RTM) adequately simulated reductive dechlorination of tetrachloroethene (PCE) to ethene in a microcosm experiment. Transport scenarios were performed to evaluate the effect of sorption and of different degradation rate constant ratios among CAH species on the downgradient isotope evolution. The power of the model to quantify degradation is illustrated for situations where mixed sources degrade and for situations where daughter products are removed by oxidative processes. Finally, the model was used to interpret the occurrence of reductive dechlorination at a field site. The developed methodology can easily be incorporated in 3D solute transport models to enable quantification of sequential CAH degradation in the field by CSIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.