Determination of the mechanical properties of individual sand grains by conventional material testing methods at the macroscale is somewhat difficult due to the sizes of the individual sand particles (a few μm to mm). In this paper, we used the nanoindentation technique with a Berkovich tip to measure the Young's modulus, hardness, and fracture toughness. An inverse problem solving approach was adopted to determine the stress-strain relationship of sand at the granular level using the finite element method. A cube-corner indenter tip was used to generate radial cracks, the lengths of which were used to determine the fracture toughness. Scatter in the data was observed, as is common with most brittle materials. In order to consider the overall mechanical behavior of the sand grains, statistical analysis of the mechanical properties data (including the variability in the properties) was conducted using the Weibull distribution function. This data can be used in the mesoscale simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.