The crystal structures and magnetic properties of the 40 nm brownmillerite SrMnO2.5 film, perovskite SrMnO3-δ film, and mixed-phase film have been systematically investigated. The features of the oxygen vacancy ordering superstructure in the brownmillerite SrMnO2.5 film are observed from HRSTEM as follows: the dark stripes with a periodicity of four (110) planes of the cubic perovskite appearing at an angle of 45° with the substrate-film interface and extra reflection spots in fast Fourier transformation patterns along the (001) plane. When annealing the brownmillerite SrMnO2.5 film under higher oxygen pressure, the top portion undergoes structure transition into perovskite SrMnO3-δ as seen in the mixed-phase film consisting of the perovskite SrMnO3-δ phase dominating at the top part and the brownmillerite SrMnO2.5 phase dominating at the bottom part. The magnetic properties and Mn valences of the brownmillerite SrMnO2.5 film indicate that this film, similar to the bulk, is antiferromagnetic with TN at 375 K. However, the strained tetragonal perovskite SrMnO3-δ film exhibits ferromagnetic behavior with Curie temperature at 75 K and a saturation magnetization of 2.5μB/Mn at 2 K. Moreover, the top perovskite SrMnO3-δ phase of the mixed-phase film also exhibits ferromagnetic behavior evidenced by the existence of the exchange bias. We propose that the ferromagnetic properties in both the perovskite SrMnO3-δ film and the top perovskite SrMnO3-δ phase in the mixed-phase film originate from Mn3+–Mn4+ double exchange coupling. However, the formation of Mn3+ differs for the two samples in that it is caused by oxygen vacancies in the former and the distribution of oxygen content across the film during annealing in the latter.
Bulk multiferroic ScMnO3 is the stable hexagonal phase, and it is very difficult to prepare its perovskite orthorhombic phase even under high pressure. We fabricated the orthorhombic ScMnO3 thin film by pulsed laser deposition through suitable substrate LaAlO3 and found that nano-scale twin-like domains are naturally formed in the thin film. Magnetic properties of the orthorhombic ScMnO3 thin films show that, besides normal antiferromagnetic ordering at 47 K, an anomalous magnetic transition occurs at 27 K for 60 nm film and at 36 K for 150 nm film only along the c-axis, which is absent in the ab-plane. Moreover, the second magnetic transition for both films is suppressed when the applied field increases from 1 kOe to 10 kOe. In addition, the ferromagnetism shows up in both films at 10 K, and saturation magnetization increases dramatically in 60 nm film compared with 150 nm film. We propose that the second magnetic transition might be more of lattice strain effect and also related to magnetism-induced ferroelectric polarization in orthorhombic RMnO3 thin films and low-temperature ferromagnetic properties in our films originate from the nano-scale twin-like domain structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.