Stereodefined four-membered rings are common motifs in bioactive molecules and versatileintermediates in organic synthesis. However, the synthesis of complex, chiral cyclobutanes is a largely unsolved problem and there is a need for general and modular synthetic methods. Here we report a series of asymmetric cross-coupling reactions between cyclobutenes and arylboronic acids which are initiated by Rh-catalysed asymmetric carbometallation. After the initial carborhodation, Rh-cyclobutyl intermediates undergo chain-walking or C-H insertion so that overall a variety of additions such as reductive Heck reactions, 1,5-addition and homoallylic substitution are observed. The synthetic applicability of these highly stereoselective transformations is demonstrated in the concise syntheses of the drug candidates Belaperidone and PF-04862853. We anticipate this approach will be widely adapted by synthetic and medicinal chemists, and while the carbometallation approach is here exemplified with Rh and arylboronic acids, it is likely applicable to other metals and nucleophiles.
Herein, we describe a rhodium‐catalyzed enantio‐ and diastereoselective Suzuki–Miyaura cross‐coupling between racemic fused bicyclic allylic chlorides and boronic acids. The highly stereoselective transformation allows for the coupling of aryl, heteroaryl, and alkenyl boronic acids and gives access to functionalized bicyclic cyclopentenes, which can be converted into other five‐membered‐ring scaffolds with up to five contiguous stereocenters. Preliminary mechanistic studies suggest that these reactions occur with overall retention of the relative stereochemistry and are enantioconvergent for pseudo‐symmetric allylic chloride starting materials. In addition, a bicyclic allylic chloride starting material without pseudo‐symmetry undergoes a highly enantioselective regiodivergent reaction.
We report the catalytic asymmetric synthesis of Tafluprost (1), a prostaglandin analogue. This synthesis demonstrates a new approach to prostaglandins involving symmetrization and desymmetrization of a racemic precursor to control the absolute and relative stereochemistry of the cyclopentyl core. Key steps include a diastereo-and enantioselective Rh-catalyzed Suzuki−Miyaura reaction of a racemic bicyclic allyl chloride and an alkenyl boronic acid and a regio-and diastereoselective Pd-catalyzed Tsuji−Trost reaction with an enolate surrogate.
The iridium-catalyzed asymmetric allylic substitution under biphasic conditions is reported. This approach allows the use of various unstable and/or volatile nucleophiles including hydrazines, methylamine, tbutyl hydroperoxide, N-hydroxylamine, α-chloroacetaldehyde and glutaraldehyde. This transformation provides rapid access to a broad range of products from simple starting materials in good yields and up to >99% ee and 20:1 d.r. Additionally, these products can be elaborated efficiently into a diverse set of cyclic and acyclic compounds, bearing up to four stereocenters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.