As an alternative to string field theories in R10 (or M theory in R11) with a large group and a very large number of possible vacuum states, we propose SU2 as the fundamental group, assuming that nature works like a computer with a binary number system. With SU2 isomorphic to SO3, the rotation group in R3, explains why R3 is the natural space. Planck’s conjecture that the fundamental equations of physics should contain as free parameters only the Planck length, mass and time, requires to replace differentials by rotation - invariant finite difference operators in R3. With SU2 as the fundamental group, there should be negative besides positive Planck masses, and the freedom in the sign of the Planck force permits to construct in a unique way a stable Planck mass plasma composed of equal numbers of positive and negative Planck mass particles, with each Planck length volume in the average occupied by one Planck mass particle, with Planck mass particles of equal sign repelling and those of opposite sign attracting each other by the Planck force over a Planck length. From the thusly constructed Planck mass plasma one can derive quantum mechanics and Lorentz invariance, the latter for small energies compared to the Planck energy. In its lowest state the Planck mass plasma has dilaton and quantized vortex states, with Maxwell’s and Einstein’s field equations derived from the antisymmetric and symmetric modes of a vortex sponge. In addition, the Planck mass plasma has excitonic quasiparticle states obeying Dirac’s equation with a maximum of four such states, and a mass formula of the lowest state in terms of the Planck mass, permitting to compute the value of the finestructure constant at the Planck length, in surprisingly good agreement with the empirical value.
According to the Planck aether hypothesis, the vacuum of space is a superfluid made up of Planck mass particles, with the particles of the standard model explained as quasiparticle - excitations of this superfluid. Astrophysical data suggests that ≈70% of the vacuum energy, called quintessence, is a negative pressure medium, with ≈26% cold dark matter and the remaining ≈4% baryonic matter and radiation. This division in parts is about the same as for rotons in superfluid helium, in terms of the Debye energy with a ≈70% energy gap and ≈25% kinetic energy. Having the structure of small vortices, the rotons act like a caviton fluid with a negative pressure. Replacing the Debye energy with the Planck energy, it is conjectured that cold dark matter and quintessence are Planck mass rotons with an energy below the Planck energy.
It is shown that a programmed fast rising current, making an excursion in excess of the Pease-Braginskii current, can isentropically compress a thermonuclear plasma to very high densities. Such a dynamic superpinch can satisfy the Lawson criterion for the D Tthermonuclear reaction. The pinch current has to be driven by a large fast rising multimegavolt pulse power source. It is anticipated that electric pulse power sources employing both the magnetic insulation and double disc principles can satisfy the needed requirements in high voltages large currents and short discharge times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.