Weaning is a challenging stage of pig farming. Animals undergo environmental, social and dietary changes leading to weaning stress syndrome. In order to compensate for the detrimental effects of weaning stress, antibiotics and natural extracts are used as feed additives, sometimes without fully understanding the interactions between them or even with low concentrations of mycotoxins that are frequently present in feed. The aim of this study was to evaluate the effect of fosfomycin (FOS), Cynara scolymus extract (CSE), deoxynivalenol (DON) and their combined administration on intestinal health of weaned piglets. The experiment was designed as a 2 × 2 × 2 factorial arrangement with 3 factors (FOS, CSE and DON treatments), 2 levels each (presence and absence) and 3 repeats. Weaned piglets (n = 24) were randomly divided in groups to receive the different treatments, namely DON administered in diet (50 μg/kg BW), FOS administered into the drinking water (30 mg/kg BW), CSE administered in diet (15 mg/kg BW) and all their combinations. After 15 d, the animals were euthanized and gastrointestinal tract samples were immediately taken to evaluate gastrointestinal pH, Enterobacteriaceae to lactic acid bacteria (E:L) ratio, volatile fatty acid (VFA) concentrations, disaccharidase (lactase, sucrase and maltase) activity, histology (intestinal absorptive area [IAA] and goblet cells count) and mucus ability to adhere pathogenic Escherichia coli. From our results, FOS and CSE treatments, individually or combined, produced a lower E:L ratio, an enhanced production of butyrate, increased disaccharidase activity (particularly maltase), and a greater IAA and goblet cells count along with an increase in pathogenic bacteria adherence to intestinal mucus. Deoxynivalenol did not show interactions with the other factors and its administration produced decreases on VFA, disaccharidase activity and goblet cells count. In conclusion, weaning piglets receiving diets containing FOS, CSE or both exhibited evident beneficial intestinal effects compared to animals receiving diets free from these compounds. On the contrary, the presence of DON at sub-toxic concentrations produced detrimental effects on intestinal health. The knowledge of the physiological and pathological gut changes produced by these compounds contributes to understand their potential productive consequences.