CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Time-dependent density functional theory has become state-of-the-art for describing photophysical and photochemical processes in extended materials due to its aordable cost. The inclusion of exact exchange was shown to be essential for the correct description of the long-range asymptotics of electronic interactions and thus a well-balanced description of valence, Rydberg and charge-transfer excitations. Several approaches for an ecient treatment of exact exchange have been established for the ground state, while implementations for excited-state properties are rare. Furthermore, the high computational costs required for excited-state properties in comparison to ground-state computations often hinder large-scale applications on periodic systems with hybrid functional accuracy. We therefore propose two approximate schemes for improving computational eciency for the treatment of exact exchange. Within the auxiliary density matrix method (ADMM), exact exchange is estimated using a relatively small auxiliary basis and the introduced basis-set incompleteness error is compensated by an exchange density functional correction term. Benchmark results for a test set of 35 molecules demonstrate that the mean absolute error introduced by ADMM is smaller than 0.30.2 pm for excited-state bond lengths and in the range of 0.02 -0.070.06 eV for vertical excitation, adiabatic excitation and uorescence energies. Computational timings for
We study self-interaction effects in solvated and strongly-correlated cationic molecular clusters, with a focus on the solvated hydroxyl radical. To address the self-interaction issue, we apply the DC-r2SCAN method, with...
Accurate descriptions of intermolecular interactions are of great importance in simulations of molecular liquids. We present an electronic structure method that combines the accuracy of the Harris functional approach with the computational efficiency of approximately linear-scaling density functional theory (DFT). The non-variational nature of the Harris functional has been addressed by constructing a Lagrangian energy functional, which restores the variational condition by imposing stationarity with respect to the reference density. The associated linear response equations may be treated with linear-scaling efficiency in an atomic orbital based scheme. Key ingredients to describe the structural and dynamical properties of molecular systems are the forces acting on the atoms and the stress tensor. These first-order derivatives of the Harris Lagrangian have been derived and implemented in consistence with the energy correction. The proposed method allows for simulations with accuracies close to the Kohn–Sham DFT reference. Embedded in the CP2K program package, the method is designed to enable ab initio molecular dynamics simulations of molecular solutions for system sizes of several thousand atoms. Available subsystem DFT methods may be used to provide the reference density required for the energy correction at near linear-scaling efficiency. As an example of production applications, we applied the method to molecular dynamics simulations of the binary mixtures cyclohexane-methanol and toluene-methanol, performed within the isobaric-isothermal ensemble, to investigate the hydrogen bonding network in these non-ideal mixtures.
Time-dependent density functional theory has become state-of-the-art for describing photophysical and photochemical processes in extended materials due to its affordable cost. The inclusion of exact exchange was shown to be essential for the correct description of the long-range asymptotics of electronic interactions and thus a well-balanced description of valence, Rydberg and charge-transfer excitations. Several approaches for an efficient treatment of exact exchange have been established for the ground state, while implementations for excited-state properties are rare. Furthermore, the high computational costs required for excited-state properties in comparison to ground-state computations often hinder large-scale applications on periodic systems with hybrid functional accuracy. We therefore propose two approximate schemes for improving computational efficiency for the treatment of exact exchange. Within the auxiliary density matrix method (ADMM), exact exchange is estimated using a relatively small auxiliary basis and the introduced basis-set incompleteness error is compensated by an exchange density functional correction term. Benchmark results for a test set of 35 molecules demonstrate that the mean absolute error introduced by ADMM is smaller than 0.2 pm for excited-state bond lengths and in the range of 0.02 - 0.06 eV for vertical excitation, adiabatic excitation and fluorescence energies. Computational timings for a series of covalent-organic frameworks demonstrate that a speed-up of at least one order of magnitude can be achieved for ES geometry optimizations in comparison to conventional hybrid functionals. The second method is to use a semi-empirical tight binding approximation for both Coulomb and exchange contributions to the excited-state kernel. This simplified Tamm-Dancoff approximation (sTDA) achieves an accuracy comparable to approximated hybrid density functional theory when referring to highly accurate coupled-cluster reference data. We find that excited-state bond lengths deviate by 1.1 pm on average and mean absolute errors in vertical excitation, adiabatic excitation and fluorescence energies are in the range of 0.2 - 0.5 eV. In comparison to ADMM-approximated hybrid functional theory, sTDA accelerates the computation of broad-band excitation spectra by one order of magnitude, suggesting its potential use for large-scale screening purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.