The electron-transfer abilities of the copper guanidinoquinoline (GUAqu) complexes [Cu(TMGqu) ] and [Cu(DMEGqu) ] (TMGqu=tetramethylguanidinoquinoline, DMEGqu=dimethylethylguanidinoquinoline) were examined in different solvents. The determination of the electron self-exchange rate based on the Marcus theory reveals the highest electron-transfer rate of copper complexes with pure N-donor ligands (k =1.2×10 s m in propionitrile). This is supported by an examination of the reorganisation energy of the complexes by using Eyring theory and DFT calculations. The low reorganisation energies in nitrile solvents correspond with the high electron-transfer rates of the complexes. Therefore, the [Cu(GUAqu) ] complexes act as good entatic states model of copper enzymes. The structural influence of the complexes on the kinetic parameters shows that the TMGqu system possesses a higher electron-transfer rate than DMEGqu. Supporting DFT calculations give a closer insight into the kinetics and thermodynamics (Nelsen's four-point method and isodesmic reactions) of the electron transfer.
The transport and systematic release of functional agents at specific areas are key challenges in various application fields. These make the development of micro-and nanocapsules, which allow for uptake, storage, and triggered release, of high interest. Hollow thermoresponsive microgels, cross-linked polymer networks with a solvent-filled cavity in their center, are promising candidates as triggerable nanocapsules, as they can adapt their size and shape to the environment. Their shell permeability can be controlled by temperature, while the cavity can serve as a storage place for guest species. Here, we present the synthesis and structural characterization of temperature-responsive microgels, which are deswollen at room temperature and swell upon moderate cooling, to facilitate potential encapsulation experiments. We present microgels made from poly(N-isopropylacrylamide-co-diacetone acrylamide), p(NIPAM-co-DAAM), possessing a volume phase transition temperature below room temperature. Their colloidal stability in the deswollen state can be enhanced by adding a swollen polymer shell made of poly(N-isopropylacrylamide), pNIPAM, as periphery. The synthesis of hollow double-shell microgels comprising a cavity surrounded by an inner p(NIPAM-co-DAAM) shell and an outer pNIPAM shell is established. The inner network enables the control of the shell permeability: the network is deswollen at room temperature and swells upon moderate cooling. The outer network guarantees for steric stability at room temperature. Light scattering techniques are employed for the characterization of the microgels. Form factor analysis reveals that the cavity of the nanocapsules persists at all swelling states, making it an ideal site for the storage of guest species.
The documentation and storage of experimental data is crucial in research data management and science in general. With regard to automated data curation and the generation of data for machine learning processes, the collection and sharing of machine-readable data, including negative results, is a key step. The electronic laboratory notebook (ELN) Chemotion provides the possibility to share synthesis data with other scientists taking the mentioned aspects into account. In these guidelines, we offer general information on how to share data in Chemotion and present our sharing policy as a best practice example on how to use Chemotion's sharing functions in a working group with several group members on various hierarchy levels.
Catalytically active copper bis(pyrazolyl)methane complexes have been anchored into pVCL-GMA microgels on specified positions within the microgel network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.