The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.
The guanidine–quinoline ligand dimethylethyleneguanidinoquinoline (DMEGqu) is able to stabilise bis(chelate) copper complexes in an intermediate geometry between tetrahedral and square‐planar environments. The structures of the obtained complexes model the entatic state and have been investigated in solid state by single‐crystal X‐ray diffraction and in the solid state and in solution by X‐ray absorption spectroscopy. The dimethylethyleneguanidine (DMEG) unit of the DMEGqu ligand displays a smaller steric encumbrance than the tetramethylguanidine (TMG) counterpart; this allows slightly larger structural changes upon oxidation than those for the TMG counterparts. Moreover, triflate coordination was possible for the CuII DMEG complexes. DFT analyses revealed that good structural and optical descriptions are possible through the use of the hybrid functionals B3LYP and TPSSh in combination with the triple‐zeta basis set def2‐TZVP and the inclusion of empirical dispersion with Becke–Johnson damping and a suitable solvent model. The orbital analysis gives insights into the electronic structure of the complexes and their charge‐transfer behaviour.
The electron-transfer abilities of the copper guanidinoquinoline (GUAqu) complexes [Cu(TMGqu) ] and [Cu(DMEGqu) ] (TMGqu=tetramethylguanidinoquinoline, DMEGqu=dimethylethylguanidinoquinoline) were examined in different solvents. The determination of the electron self-exchange rate based on the Marcus theory reveals the highest electron-transfer rate of copper complexes with pure N-donor ligands (k =1.2×10 s m in propionitrile). This is supported by an examination of the reorganisation energy of the complexes by using Eyring theory and DFT calculations. The low reorganisation energies in nitrile solvents correspond with the high electron-transfer rates of the complexes. Therefore, the [Cu(GUAqu) ] complexes act as good entatic states model of copper enzymes. The structural influence of the complexes on the kinetic parameters shows that the TMGqu system possesses a higher electron-transfer rate than DMEGqu. Supporting DFT calculations give a closer insight into the kinetics and thermodynamics (Nelsen's four-point method and isodesmic reactions) of the electron transfer.
Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper-catalysed direct C-H amination and nitrene transfer. Novel perfluoroalkyl-pyrazolyl- and pyridinyl-containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper tosyl nitrenes were prepared at low temperatures by the reaction with SO tBuPhINTs and copper(I) acetonitrile complexes. Their stoichiometric reactivity has been elucidated regarding the imination of phosphines and the aziridination of styrenes. The formation and thermal decay of the copper nitrenes were investigated by UV/Vis spectroscopy of the highly coloured species. Additionally, the compounds were studied by cryo-UHR-ESI mass spectrometry and DFT calculations. In addition, a mild catalytic procedure has been developed where the copper nitrene precursors enable the C-H amination of cyclohexane and toluene and the aziridination of styrenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.