Background Previous research has described a neuroprotective effect of IGF-I, supporting neuronal survival, axon growth and proliferation of muscle cells. Therefore, the association between IGF-I concentration, muscle histology and electrophysiological markers in a cohort of patients with sarcopenia dares investigation. Methods Measurement of serum concentrations of IGF-I and binding partners, electromyographic measurements with the MUNIX (Motor Unit Number Index) method and muscle biopsies were performed in 31 patients with acute hip fracture older age 60 years. Molecular markers for denervation (neural cell adhesion molecule NCAM) and proliferation markers (Ki67) were assessed by immunofluorescence staining of muscle biopsy tissue. Skeletal muscle mass by bioelectrical impedance analysis and hand-grip strength were measured to assess sarcopenia status according to EWGSOP2 criteria. Results Thirty-one patients (20 women) with a mean age of 80.6 ± 7.4 years were included. Concentrations of IGF-I and its binding partners were significantly associated with sarcopenia (ß = − 0.360; p = 0.047) and MUNIX (ß = 0.512; p = 0.005). Further, expression of NCAM (ß = 0.380; p = 0.039) and Ki67 (ß = 0.424; p = 0.022) showed significant associations to IGF-I concentrations. Conclusions The findings suggest a pathogenetic role of IGF-I in sarcopenia based on muscle denervation.
Background Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform. Methods Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed. Results Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome. Conclusions We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.
Background Sarcopenia is the age-related loss of muscle mass and strength. Undiagnosed late-onset neuromuscular disorders need to be considered in the differential diagnosis of sarcopenia. Aim Based on emblematic case reports and current neuromuscular diagnostic guidelines for three common late-onset neuromuscular disorders, a differential diagnostic approach for geriatric patients presenting with a sarcopenic phenotype is given. Methods Patients over 65 years of age with sarcopenia, amyotrophic lateral sclerosis, inclusion body myositis and myotonic dystrophy type 2 were recruited. All patients were assessed for sarcopenia based on the revised European consensus definition. Patients with neuromuscular diseases were diagnosed according to the revised El Escorial criteria and the European neuromuscular centre criteria. Phenotypes and diagnostic criteria for all patients were summarized including their specific histopathological findings. Results All patients with neuromuscular diseases were positively screened for sarcopenia and classified as severe sarcopenic by means of assessment. The clinical phenotype, the evolution pattern of weakness and muscle atrophy combined with laboratory finding including electromyography could unquestionably distinguish the diseases. Discussion Neuromuscular disorders can manifest beyond the age of 65 years and misdiagnosed as sarcopenia. The most common diseases are inclusion body myositis, amyotrophic lateral sclerosis and myotonic dystrophy type 2. A diagnostic work-up for neuromuscular diseases ensures their correct diagnosis by clinical-, electrophysiological, histopathological, and genetic work-up. Conclusions In geriatric patients with a focal or asymmetrical muscular weakness and atrophy, sarcopenia assessment should be extended with patient’s history of disease course. Furthermore, concomitant diseases, analysis of serum creatine kinase, electrophysiological examination, and in selected patients muscle biopsy and gene analysis is needed to rule out a late-onset neuromuscular disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.