In recent years, nanoporous Si films have been widely studied for thermoelectric applications due to the low cost and earth abundance of Si. Despite many encouraging results, inconsistency still exists among experimental and theoretical studies of reduced lattice thermal conductivity for varied nanoporous patterns. In addition, divergence can also be found among reported data, due to the difference in sample preparation and measurement setups. In this work, systematic measurements are carried out on nanoporous Si thin films with pore pitches on the order of 100 nm, where pores are drilled either by dry etching or a focused ion beam. In addition to thermal conductivity measurements, the specific heat of the nanoporous films is simultaneously measured and agrees with the estimation using bulk values, indicating a negligible change in the phonon dispersion. Without considering coherent phonon transport, the measured thermal conductivity values agree with predictions by frequency-dependent phonon Monte Carlo simulations assuming diffusive pore-edge phonon scattering. In Monte Carlo simulations, an expanded effective pore diameter is used to account for the amorphization and oxidation on real pore edges.
In this work, high-temperature annealing above 1073 K has been carried out to study the possible shape change of nanoporous Si thin films. Under 1273 K, it is found that the pore size can still be largely maintained when the nanoporous Si thin film is on a SiO /Si substrate. 2 However, the pore size can significantly shrink when the film is suspended. The contrast suggests that the SiO /Si substrate can play an 2 important role in maintaining the nanoporous patterns at a high temperature. This finding can be important for the high-temperature applications of these porous thin films, such as thermoelectric power generation.
At the atomic level, heat is viewed as energy for lattice vibrational waves, i.e., a mechanical wave. Correspondingly, the strain as atomic displacement can have a profound impact on the thermal transport. Despite numerous atomistic simulations, fewer experimental efforts can be found for strain-dependent thermal properties of individual nanostructures and thin films. In this work, suspended 2 μm-thick Si films were stretched to reveal the influence of the uniaxial tensile strain on in-plane thermal conductivity along the stretching direction. In a high vacuum, the room-temperature thermal conductivity of a 2 μm-thick Si film decreased from 135.5 ± 6.9 to 127.2 ± 6.5 W/m K under a ∼0.44% tensile strain. This thermal conductivity decrease followed the predicted trend for Si films. In addition, the heat transfer coefficient of representative thin films in the air was also measured to reveal the impact of the heat loss along the sample sidewall on previous in-air thermal measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.