The one-pot, three-component Sonogashira coupling-TMS-deprotection-CuAAC ("click") sequence is the key reaction for the rapid synthesis of triazolyl substituted N-Boc protected NH-heterocycles, such as indole, indazole, 4-, 5-, 6-, and 7-azaindoles, 4,7-diazaindole, 7-deazapurines, pyrrole, pyrazole, and imidazole. Subsequently, the protective group was readily removed to give the corresponding triazolyl derivatives of these tremendously important NH-heterocycles. All compounds have been tested in a broad panel of kinase assays. Several compounds, 8f, 8h, 8k, and 8l, have been shown to inhibit the kinase PDK1, a target with high oncology relevance, and thus they are promising lead structures for the development of more active derivatives. The X-ray structure analysis of compound 8f in complex with PDK1 has revealed the detailed binding mode of the molecule in the kinase.
Summary2,5-Di(hetero)arylfurans are readily accessible in a pseudo five-component reaction via a Sonogashira–Glaser coupling sequence followed by a superbase-mediated (KOH/DMSO) cyclization in a consecutive one-pot fashion. Besides the straightforward synthesis of natural products and biologically active molecules all representatives are particularly interesting due to their bright blue luminescence with remarkably high quantum yields. The electronic structure of the title compounds is additionally studied with DFT computations.
4-Pyrazolyl-1,2,3-triazoles can be readily synthesized in a one-pot fashion and moderate yield by employing a consecutive four-component process consisting of a sequentially Pd-Cu-catalyzed alkynylation-cyclocondensation-desilylation-CuAAC process. Most distinctly, (triisopropylsilyl)butadiyne is employed as a four-carbon building block in this one-pot de novo formation of both heterocyclic moieties.
The Sonogashira-Glaser sequence combined with a microwave-assisted cyclization is a powerful tool to synthesize unsymmetrically substituted conjugated thiophenes. A variety of 3-(hetero)arylmethyl-2,5-di(hetero)aryl-substituted thiophenes could be synthesized in moderate to excellent yields using a single Pd/Cu catalyst system. The presented method is strikingly simple to perform using commercially available starting materials. The obtained trisubstituted oligothiophene derivatives are interesting molecules for materials science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.