Three-dimensional (3D) assemblies based on carbon nanomaterials still lag behind their individual one-dimensional building blocks in terms of mechanical and electrical properties. Here we demonstrate a simple strategy for the fabrication of an open porous 3D self-organized double-hierarchical carbon nanotube tube structure with properties advantageous to those existing so far. Even though no additional crosslinking exists between the individual nanotubes, a high reinforcement effect in compression and tensile characteristics is achieved by the formation of self-entangled carbon nanotube (CNT) networks in all three dimensions, employing the CNTs in their high tensile properties. Additionally, the tubular structure causes a self-enhancing effect in conductivity when employed in a 3D stretchable conductor, together with a high conductivity at low CNT concentrations. This strategy allows for an easy combination of different kinds of low-dimensional nanomaterials in a tube-shaped 3D structure, enabling the fabrication of multifunctional inorganic-carbon-polymer hybrid 3D materials.
Since their first allusion, carbon nanotubes have attracted significant research interest, especially with respect to composite manufacturing as a filler material for enhancing their mechanical and electrical properties. Several methods have been developed for modifying the electrical properties of carbon nanotubes such as CNTs wall's carbon atoms substitution with other appropriate atoms including engineering of their outer surfaces by covalent and noncovalent molecules, such as CNTs channel filling and nano-chemical reactions therein. CNTs with tailored electrical conduction open large perspectives for their applicabilities in advanced technologies. Taking into consideration the innovative advantages of pure and hybrid CNTs, in this article we have comprehensively reviewed the latest state-of-art research developments in the direction of different synthesis strategies, structure-property relationships, and advanced applications towards energy storage, supercapacitors, electrodes, catalytic supports, as well as biosensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.