Cell engraftment, survival and integration during transplantation procedures represent the crux of cell-based therapies. Thus, there have been many studies focused on improving cell viability upon implantation. We used severe oxidative stress to select for a mouse mesoangioblast subpopulation in vitro and found that this subpopulation retained self-renewal and myogenic differentiation capacities while notably enhancing cell survival, proliferation and migration relative to unselected cells. Additionally, this subpopulation of cells presented different resistance and recovery properties upon oxidative stress treatment, demonstrating select advantages over parental mesoangioblasts in our experimental analysis. Specifically, the cells were resistant to oxidative environments, demonstrating survival, continuous self-renewal and improved migration capability. The primary outcome of the selected cells was determined in in vivo experiments in which immunocompromised dystrophic mice were injected intramuscularly in the tibialis anterior with selected or non-selected mesoangioblasts. Resistant mesoangioblasts exhibited markedly enhanced survival and integration into the host skeletal muscle, accounting for a more than 70% increase in engraftment compared with that of the unselected mesoangioblast cell population and leading to remarkable muscle recovery. Thus, the positive effects of sorting on mesoangioblast cell behaviour in vitro and in vivo suggest that a selection step involving oxidative stress preconditioning may provide a novel methodology to select for resistant cells for use in regenerative tissue applications to prevent high mortality rates upon transplantation.
Microvesicles represent a newly identified mechanism of intercellular communication. Two different types of microvesicles have been identified: membrane-derived vesicles (EVs) and exosomes. EVs originate by direct budding from the plasma membrane, while exosomes arise from ectocytosis of multivesicular bodies. Recent attention has focused on the capacity of EVs to alter the phenotype of neighboring cells to make them resemble EV-producing cells. Stem cells are an abundant source of EVs, and the interaction between stem cells and the microenvironment (i.e., stem cell niche) plays a critical role in determining stem cell phenotype. The stem cell niche hypothesis predicts that stem cell number is limited by the availability of niches releasing the necessary signals for self-renewal and survival, and the niche thus provides a mechanism for controlling and limiting stem cell numbers. EVs may play a fundamental role in this context by transferring genetic information between cells. EVs can transfer mRNA and microRNA to target cells, both of which may be involved in the change in target-cell phenotype towards that of EV-producing cells. The exchange of genetic information may be bidirectional, and EV-mediated transfer of genetic information after tissue damage may reprogram stem cells to acquire the phenotypic features of the injured tissue cells. In addition, stem cell-derived EVs may induce the de-differentiation of cells that survive injury by promoting their reentry into the cell cycle and subsequently increasing the possibility of tissue regeneration.
Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression, or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may offer strategies to protect the brain during progression of neurodegenerative disease.
Background: Some patients experience statin-induced side effects or prefer nutraceutical approaches for the treatment of dyslipidemia. This has led to a search for alternative therapeutic approaches for dyslipidemia management. In recent studies Citrus bergamia (known as Bergamot) juice was able to reduce serum levels of lipids. Such benefit may be attributed to high amounts of flavonoids contained in Bergamot fruit juice (neoeriocitrin, neohesperidin, naringin). The aim of the present study was to fully investigate the effects of a Bergamot extract on cardio-metabolic parameters, including plasma lipids, atherogenic lipoproteins and subclinical atherosclerosis.Methods: Eighty subjects (42 men and 38 women, mean age: 55 ± 13 years) with moderate hypercholesterolemia [e.g., with plasma LDL-cholesterol concentrations between 160 and 190 mg/dl (between 4.1 and 4.9 mmol/l)] were included. A Bergamot-derived extract (Bergavit R®) was given at a fixed dose daily (150 mg of flavonoids, with 16% of neoeriocitrin, 47% of neohesperidin and 37% of naringin) for 6 months. Lipoprotein subfractions were assessed by gel electrophoresis. With this methodology low density lipoprotein (LDL) subclasses are distributed as seven bands (LDL-1 and -2 as large LDL, and LDL-3 to -7 as atherogenic small, dense LDL). Subclinical atherosclerosis was assessed by carotid intima-media thickness (cIMT) using B-mode ultrasound.Results: After 6 months, Bergavit R® reduced total cholesterol (from 6.6 ± 0.4 to 5.8 ± 1.1 mmol/l, p < 0.0001), triglycerides (from 1.8 ± 0.6 to 1.5 ± 0.9 mmol/l, p = 0.0020), and LDL-cholesterol (from 4.6 ± 0.2 to 3.7 ± 1.0 mmol/l, p < 0.0001), while HDL- cholesterol increased (from 1.3 ± 0.2 to 1.4 ± 0.4 mmol/l, p < 0.0007). In addition, a significant increase in LDL-1 (from 41.2 ± 0.2 to 49.6 ± 0.2%, p < 0.0001) was accompanied by decreased small, dense LDL-3, -4, and 5 particles (from 14.5 ± 0.1 to 9.0 ± 0.1% p < 0.0001; 3.2 ± 0.1 to 1.5 ± 0.1% p = 0.0053; 0.3 ± 0.0% to 0.1 ± 0.0% p = 0.0133, respectively). cIMT also decreased from 1.2 ± 0.4 to 0.9 ± 0.1 mm (p < 0.0001).Conclusion: This is the first study investigating the effects of Bergamot flavonoids supplementation on cardio-metabolic risk in dyslipidemic subjects. Bergavit R® (Bergamot juice extract) supplementation significantly reduced plasma lipids and improved the lipoprotein profile. cIMT was also reduced significantly over a relatively short time frame of 6 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.