BackgroundKinin B1 receptors are inducible molecules up-regulated after inflammatory stimuli. This study evaluated the relevance of kinin B1 receptors in a mouse depression behavior model.MethodsMice were exposed to a 5-min swimming session, and 30 min later they were injected with E. coli lipopolysaccharide (LPS). Depression-like behavior was assessed by determining immobility time in a tail suspension test. Different brain structures were collected for molecular and immunohistochemical studies. Anhedonia was assessed by means of a sucrose intake test.ResultsOur protocol elicited an increase in depression-like behavior in CF1 mice, as assessed by the tail-suspension test, at 24 h. This behavior was significantly reduced by treatment with the selective B1 receptor antagonists R-715 and SSR240612. Administration of SSR240612 also prevented an increase in number of activated microglial cells in mouse hippocampus, but did not affect a reduction in expression of mRNA for brain-derived neurotrophic factor. The increased immobility time following LPS treatment was preceded by an enhancement of hippocampal and cortical B1 receptor mRNA expression (which were maximal at 1 h), and a marked production of TNFα in serum, brain and cerebrospinal fluid (between 1 and 6 h). The depression-like behavior was virtually abolished in TNFα p55 receptor-knockout mice, and increased B1 receptor mRNA expression was completely absent in this mouse strain. Furthermore, treatment with SSR240612 was also effective in preventing anhedonia in LPS-treated mice, as assessed using a sucrose preference test.ConclusionOur data show, for the first time, involvement of kinin B1 receptors in depressive behavioral responses, in a process likely associated with microglial activation and TNFα production. Thus, selective and orally active B1 receptor antagonists might well represent promising pharmacological tools for depression therapy.
BACKGROUND AND PURPOSECyclophosphamide induces urotoxicity characterized by the development of cystitis, which involves bladder overactivity and inflammation. Here, we investigated the roles of chemokine receptor 2 (CXCR2) and transient receptor potential vanilloid 1 (TRPV1) channels in a rat model of cyclophosphamide-induced cystitis.
EXPERIMENTAL APPROACHCystitis induced by cyclophosphamide in rats was assessed by gross morphology, histology and immunohistochemistry of bladder tissue. mRNA for CXCR2 and TRPV1 channels were measured by RT-PCR. Nociceptive responses in paw and abdomen, along with cystometric measures were recorded.
KEY RESULTSCyclophosphamide, i.p., induced pain behaviour, bladder inflammation and voiding dysfunction. The CXCR2 antagonist, SB225002, the TRPV1 channel antagonist, SB366791 or their combination reduced the mechanical hypersensitivity of paw and abdominal area and nociceptive behaviour after cyclophosphamide. Cyclophosphamide-induced cystitis was characterized by haemorrhage, oedema, neutrophil infiltration and other inflammatory changes, which were markedly decreased by the antagonists. Up-regulation of CXCR2 and TRPV1 mRNA in the bladder after cyclophosphamide was inhibited by SB225002, SB366791 or their combination. Expression of CXCR2 and TRPV1 channels was increased in the urothelium after cyclophosphamide. Bladder dysfunction was shown by increased number of non-voiding contractions (NVCs) and bladder pressures and a reduction in bladder capacity (BC), voided volume (VV) and voiding efficiency (VE). SB225002 or its combination with SB366791 reduced bladder pressures, whereas SB225002, SB366791 or their combination increased BC, VV and VE, and also reduced the number of NVCs.
CONCLUSIONS AND IMPLICATIONSCXCR2 and TRPV1 channels play important roles in cyclophosphamide-induced cystitis in rats and could provide potential therapeutic targets for cystitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.