The thyroid hormone (TH) plays an important role in glucose metabolism. Recently, we showed that the TH improves glycemia control by decreasing cytokines expression in the adipose tissue and skeletal muscle of alloxan‐induced diabetic rats, which were also shown to present primary hypothyroidism. In this context, this study aims to investigate whether the chronic treatment of diabetic rats with T3 could affect other tissues that are involved in the control of glucose homeostasis, as the liver and kidney. Adult Male Wistar rats were divided into nondiabetic, diabetic, and diabetic treated with T3 (1.5 μg/100 g BW for 4 weeks). Diabetes was induced by alloxan monohydrate (150 mg/kg, BW, i.p.). Animals showing fasting blood glucose levels greater than 250 mg/dL were selected for the study. After treatment, we measured the blood glucose, serum T3, T4, TSH, and insulin concentration, hepatic glucose production by liver perfusion, liver PEPCK, GAPDH, and pAKT expression, as well as urine glucose concentration and renal expression of SGLT2 and GLUT2. T3 reduced blood glucose, hepatic glucose production, liver PEPCK, GAPDH, and pAKT content and the renal expression of SGLT2 and increased glycosuria. Results suggest that the decreased hepatic glucose output and increased glucose excretion induced by T3 treatment are important mechanisms that contribute to reduce serum concentration of glucose, accounting for the improvement of glucose homeostasis control in diabetic rats.
We developed a pre-clinical model in which to evaluate the impact of orally administered carbohydrates on postprandial blood glucose levels. For this purpose, we compared the effects of different carbohydrates with well-established glycemic indexes. We orally administered (gavage) increasing amounts (0.2, 0.4, 0.6, 0.8, and 1.0 g/kg) of sucrose and lactose to rats which had been fasted for 6 h or 15 h, respectively. In part of the experiments we administered frutose (gavagem). Three different models were compared for measuring postprandial blood glucose levels: a) evaluation of interstitial glucose concentrations by using a real time continuous glucose monitoring system; b) evaluation of glucose levels in blood obtained from the rat tail; c) evaluation of serum glucose levels in blood collected after decapitation. Our results showed that blood obtained from the tails of 15-h fasted rats was the best model in which to evaluate the effect of carbohydrates on postprandial blood glucose levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.