The COVID-19 pandemic has affected all aspects of society. Researchers worldwide have been working to provide new solutions to and better understanding of this coronavirus. In this research, our goal was to perform a Bibliometric Network Analysis (BNA) to investigate the strategic themes, thematic evolution structure and trends of coronavirus during the first eight months of COVID-19 in the Web of Science (WoS) database in 2020. To do this, 14,802 articles were analyzed, with the support of the SciMAT software. This analysis highlights 24 themes, of which 11 of the more important ones were discussed in-depth. The thematic evolution structure shows how the themes are evolving over time, and the most developed and future trends of coronavirus with focus on COVID-19 were visually depicted. The results of the strategic diagram highlight ‘CHLOROQUINE’, ‘ANXIETY’, ‘PREGNANCY’ and ‘ACUTE-RESPIRATORY-SYNDROME’, among others, as the clusters with the highest number of associated citations. The thematic evolution. structure presented two thematic areas: “Damage prevention and containment of COVID-19” and “Comorbidities and diseases caused by COVID-19”, which provides new perspectives and futures trends of the field. These results will form the basis for future research and guide decision-making in coronavirus focused on COVID-19 research and treatments.
Introdução: A percepção materna do estado nutricional de seus filhos apresenta diversos fatores sociais importantes em sua composição e ela pode ser um importante na determinação da qualidade de alimentação das crianças. Objetivo: Avaliar os fatores sociais que influenciam a percepção materna sobre o estado nutricional de seus filhos. Método: Estudo transversal com escolares de 6 a 10 anos de uma escola pública de São Paulo, Brasil. Os dados foram obtidos por meio de um questionário estruturado aplicado às mães e a partir de antropometria das crianças. As associações entre as variáveis foram analisadas pelo teste do Quiquadrado e pela análise dos resíduos ajustados, com 5% de significância. A concordância entre a percepção materna e o estado nutricional foi avaliada por meio do teste Kappa. Resultados: Encontramos percepção incorreta em 45,8% dos casos, dos quais 98,2% foram de subestimação, com 80% de subestimação para crianças com sobrepeso. Encontramos concordância pobre e leve para todos os casos. Os resíduos ajustados apontaram para subestimação eutrófica; melhorpercepção materna para o obeso; melhor percepção para mães que atingiram o ensino fundamental e médio; subestimação para meninos eutróficos e percepção correta para meninas eutróficas. As mães solteiras e as que não trabalham fora tendem a subestimar seus filhos eutróficos. Conclusão: Encontramos baixa concordância para quase todos os casos, com exceção das mães de meninas e das que não trabalham fora. A percepção correta relacionou-se positivamente com a menor escolaridade, sendo pior para as mães sem companheiro e que não trabalham fora. As mães demeninas, em comparação com as mães de meninos, tiveram uma percepção mais precisa.
Introduction: the Coronavirus Disease 2019 (COVID-19) is a viral disease which has been declared a pandemic by the WHO. Diagnostic tests are expensive and are not always available. Researches using machine learning (ML) approach for diagnosing SARS-CoV-2 infection have been proposed in the literature to reduce cost and allow better control of the pandemic. Objective: we aim to develop a machine learning model to predict if a patient has COVID-19 with epidemiological data and clinical features. Methods: we used six ML algorithms for COVID-19 screening through diagnostic prediction and did an interpretative analysis using SHAP models and feature importances. Results: our best model was XGBoost (XGB) which obtained an area under the ROC curve of 0.752, a sensitivity of 90%, a specificity of 40%, a positive predictive value (PPV) of 42.16%, and a negative predictive value (NPV) of 91.0%. The best predictors were fever, cough, history of international travel less than 14 days ago, male gender, and nasal congestion, respectively. Conclusion: We conclude that ML is an important tool for screening with high sensitivity, compared to rapid tests, and can be used to empower clinical precision in COVID-19, a disease in which symptoms are very unspecific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.