SUMMARYPurpose: Neuroinflammation appears as a prominent feature of the mesiotemporal lobe epilepsy syndrome (MTLE) that is observed in human patients and animal models. However, the precise temporal relationship of its development during epileptogenesis remains to be determined. The aim of the present study was to investigate (1) the time course and spatial distribution of neuronal death associated with seizure development, (2) the time course of microglia and astrocyte activation, and (3) the kinetics of induction of mRNAs from neuroinflammatoryrelated proteins during the emergence of recurrent seizures. Methods: Experimental MTLE was induced by the unilateral intrahippocampal injection of kainate in C57BL/6 adult mice. Microglial and astrocytic changes in both ipsilateral and contralateral hippocampi were examined by respectively analyzing griffonia simplicifolia (GSA) lectin staining and glial fibrillary acidic protein (GFAP) immunoreactivity. Changes in mRNA levels of selected genes of cytokine and cytokine regulatory proteins (interleukin-1b, IL-1b; interleukin-1 receptor antagonist, IL-1Ra; suppressor of cytokine signaling 3, SOCS3) and enzymes of the eicosanoid pathway (group IVA cytosolic phospholipase A2, cPLA 2 -a; cycloxygenase-2, COX-2) were studied by reverse transcription-quantitative real time polymerase chain reaction. Key Findings: Our data show an immediate cell death occurring in the kainate-injected hippocampus during the initial status epilepticus (SE). A rapid increase of activated lectin-positive cells and GFAP-immunoreactivity was subsequently detected in the ipsilateral hippocampus. In the same structure, Il-1b, IL-1Ra, and COX-2 mRNA were specifically increased during SE and epileptogenesis with a different time course. Conversely, the expression of SOCS3 mRNA, a surrogate marker of interleukin signaling, was mainly increased in the contralateral hippocampus after SE. Significance: Our data show that specific neuroinflammatory pathways are activated in a time-and structuredependent manner with putative distinct roles in epileptogenesis.
Reference genes are often used to normalize expression of data from real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and only a validation of their stability during a given experimental paradigm leads to reliable interpretations. The present study was thus designed to validate potential reference genes in a mouse model of mesiotemporal lobe epilepsy (MTLE) with focal seizures after unilateral intrahippocampal injection of kainate (KA). Ipsilateral and contralateral hippocampi were removed during nonconvulsive status epilepticus (5 hr), epileptogenesis (7 days), and the chronic period of recurrent focal seizures (21 days). Naive animals were equally studied. The stability of eight potential reference genes (hypoxanthine phosphoribosyltransferase, Hprt1; peptidylprolyl isomerase A, Ppia; TATA box binding protein, Tbp; beta-actin, Actb; acidic ribosomal phosphoprotein P0, Arbp; glyceraldehyde-3-phosphate dehydrogenase, Gapdh; ribosomal RNA 18S, 18S rRNA; and glucuronidase beta, Gusb) were determined using geNorm and NormFinder software. The first five (Hprt1, Ppia, Tbp, Actb, and Arbp) were found to be stable across the different phases of the disease and appeared adequate for normalizing RT-qPCR data in this model. This was in contrast to the other three (18S rRNA, Gapdh, and Gusb), which showed unstable expressions and should be avoided. The analysis of KA-induced changes in the expression of glial fibrillary acidic protein (Gfap) gene resulted in various relative expressions or even a completely different pattern when unstable reference genes were used. These results highlight the absolute need to validate the reference genes for a correct interpretation of mRNA quantification.
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.