Age‐related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease‐modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.
Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.
Beyond deepening understanding of the hippocampal tissue system, establishment of this model provides a method to evaluate candidate stimulating devices and protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.