Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a fatal disease of the central nervous system that is acquired while swimming or diving in freshwater. A cDNA clone designated Mp2C15 obtained from N. fowleri was used as a probe to distinguish N. fowleri from other free-living amoebae. The Mp2C15 probe hybridized to genomic DNA from pathogenic N. fowleri and antigenically related non-pathogenic N. lovaniensis. Mp2C15 was digested with the restriction enzyme XbaI, resulting in two fragments, Mp2C15.G and Mp2C15.P. Four species of Naegleria and four species of Acanthamoeba were examined for reactivity with Mp2C15.P. Mp2C15.P was specific for N. fowleri and was used in the development of a nested PCR assay which is capable of detecting as little as 5 pg of N. fowleri DNA or five intact N. fowleri amoebae. In summary, a rapid, sensitive, and specific assay for the detection of N. fowleri was developed.
Naegleria fowleri, an amoeboflagellate, is the causative agent of Primary Amoebic Meningoencephalitis, a fulminating disease of the central nervous system. In order to elucidate the mechanisms of pathogenicity of this amoeba, a cDNA expression library was prepared from N. fowleri RNA. A specific protein was found to be expressed from a cDNA clone designated Mp2CL5. Northern blot analysis showed that the Mp2CL5 mRNA was expressed in pathogenic N. fowleri but was not expressed in non-pathogenic Naegleria species nor in Acanthamoeba. Western blot analysis using anti-N. fowleri antiserum demonstrated that IPTG-induced Escherichia coli Mp2CL5 expressed a 23-kDa recombinant protein. The Mp2CL5 recombinant protein was histidine-tagged and purified to homogeneity from E. coli. A polyclonal rabbit antiserum was prepared against the purified Mp2CL5 recombinant protein. This antibody was used to further characterize the Mp2CL5 native protein expressed by N. fowleri. Western blot analysis in conjunction with immunofluorescence microscopy demonstrated the presence of a native protein of 17 kDa on the plasma membrane of N. fowleri trophozoites. The native N. fowleri protein was expressed in the logarithmic phase of trophozoite growth and the production of this protein increased through the stationary phase of growth. Studies are in progress to examine further its role as a virulence factor.
Monoclonal antibody (Mab) 5D12 against Naegleria fowleri was analyzed for species specificity. Mab 5D12 reacted with a ubiquitous epitope present on the membrane of N. fowleri but not with soluble antigens. The Mab did not react with N. lovaniensis, N. gruberi, N. australiensis, or Acanthamoeba castellanii. The decreased reactivity of Mab 5D12 with N. fowleri observed after periodate oxidation, after digestion of carbohydrate moieties by three glycosidases, or after treatment of amebas with tunicamycin strongly suggests that the antigenic determinant has a polysaccharide component. Inhibition of the reactivity of Mab 5D12 by soluble saccharides supports the idea that N-acetyl or amino groups may play an important role in the recognition of the carbohydrate component of the epitope by the Mab. The specificity of Mab 5D12 makes this an ideal reagent for the identification of N. fowleri in environmental samples or in clinical specimens.
Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis, a fatal human disease of the central nervous system often contracted after swimming in fresh water. Identifying sites contaminated by N. fowleri is important in order to prevent the disease. An Enzyme-Linked ImmunoSorbent Assay (ELISA) has been developed for the specific identification of N. fawleri in primary cultures of environmental water samples. Of 939 samples isolated from artificially heated river water and screened by ELISA, 283 were positive. These results were subsequently confirmed by isoelectric focusing, the established reference method. A sensitivity of 97.4% and a specificity of 97% were obtained. These results indicate that this ELISA method is reliable and can be considered as a powerful tool for the detection of N. fowleri in environmental water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.