Naegleria fowleri, an amoeboflagellate, is the causative agent of Primary Amoebic Meningoencephalitis, a fulminating disease of the central nervous system. In order to elucidate the mechanisms of pathogenicity of this amoeba, a cDNA expression library was prepared from N. fowleri RNA. A specific protein was found to be expressed from a cDNA clone designated Mp2CL5. Northern blot analysis showed that the Mp2CL5 mRNA was expressed in pathogenic N. fowleri but was not expressed in non-pathogenic Naegleria species nor in Acanthamoeba. Western blot analysis using anti-N. fowleri antiserum demonstrated that IPTG-induced Escherichia coli Mp2CL5 expressed a 23-kDa recombinant protein. The Mp2CL5 recombinant protein was histidine-tagged and purified to homogeneity from E. coli. A polyclonal rabbit antiserum was prepared against the purified Mp2CL5 recombinant protein. This antibody was used to further characterize the Mp2CL5 native protein expressed by N. fowleri. Western blot analysis in conjunction with immunofluorescence microscopy demonstrated the presence of a native protein of 17 kDa on the plasma membrane of N. fowleri trophozoites. The native N. fowleri protein was expressed in the logarithmic phase of trophozoite growth and the production of this protein increased through the stationary phase of growth. Studies are in progress to examine further its role as a virulence factor.
A Rhodobacter capsulatus hemC mutant has been isolated and used to show that oxygen regulates the intracellular levels of porphobilinogen. Experiments using a hemB-cat gene fusion demonstrated that oxygen does not transcriptionally regulate hemB transcription. Porphobilinogen synthase activity is not regulated by oxygen nor is the enzyme feedback inhibited by hemin or protoporphyrin IX. It was demonstrated that less than 20% of [ 14 C]aminolevulinate was incorporated into bacteriochlorophyll, suggesting that the majority of the aminolevulinate is diverted from the common tetrapyrrole pathway. Porphobilinogen oxygenase activity was not observed in this organism; however, an NADPH-linked aminolevulinate dehydrogenase activity was demonstrated. The specific activity of this enzyme increased with increasing oxygen tension. The results presented here suggest that carbon flow over the common tetrapyrrole pathway is regulated by a combination of feedback inhibition of aminolevulinate synthase and diversion of aminolevulinate from the pathway by aminolevulinate dehydrogenase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.