A comparative structural genomic analysis of a new class of metal-trafficking proteins can provide insights into the intracellular chemistry of reactive cofactors such as copper and zinc. Starting from the sequences of the metallochaperone Atx1 and from the first soluble domain of the copper-transporting ATPase Ccc2, both from yeast, a search on the available genomes was performed using a homology criterion and a metal-binding motif xЈ-xЉ-C-xٞ-x٣-C. By limiting ourselves to 20% identity with any of the proteins found, several soluble copper-transport proteins were identified, as well as soluble domains of membrane-bound ATPases. Structural models were calculated using high-resolution solution structures as templates, and the models were validated using statistical and energy criteria. Residue conservation and substitution have been interpreted and discussed in terms of structure-function relationship. The potential energy surfaces have been analyzed in terms of protein-protein interactions. We find that metallochaperones and their physiological partner ATPases from several phylogenetic kingdoms recognize one another, via an interplay of electrostatics, hydrogen bonding, and hydrophobic interactions, in a manner that precisely orients the metal-binding side chains for rapid metal transfer between otherwise tight binding sites. Finally, other putative metal-transport proteins are mentioned that have low homology and/or a different metal-binding consensus motif and that appear to use similar structures for recognition and transfer. This analysis highlights the wealth and the complexity of the field.
The eukaryotic copper,zinc superoxide dismutases are remarkably stable dimeric proteins that maintain an intrasubunit disulfide bond in the reducing environment of the cytosol and are active under a variety of stringent denaturing conditions. The structural interplay of conserved disulfide bond and metal-site occupancy in human copper,zinc superoxide dismutase (hSOD1) is of increasing interest as these post-translational modifications are known to dramatically alter the catalytic chemistry, the subcellular localization, and the susceptibility of the protein to aggregation. Using biophysical methods, we find no significant change in the gross secondary or tertiary structure of the demetallated form upon reduction of the disulfide. Interestingly, reduction does lead to a dramatic change in the quaternary structure, decreasing the monomer-todimer equilibrium constant by at least four orders of magnitude. This reduced form of hSOD1 is monomeric, even at concentrations well above the physiological range. Either the addition of Zn(II) or the formation of the disulfide leads to a shift in equilibrium that favors the dimeric species, even at low protein concentrations (i.e. micromolar range). We conclude that only the most immature form of hSOD1, i.e. one without any posttranslational modifications, favors the monomeric state under physiological conditions. This finding provides a basis for understanding the selectivity of mitochondrial SOD1 import and may be relevant to the toxic properties of mutant forms of hSOD1 that can cause the familial form of amyotrophic lateral sclerosis.Eukaryotic copper,zinc superoxide dismutase (SOD1) 1 catalyzes the dismutation of superoxide radical to oxygen and hydrogen peroxide and is a 32-kDa homodimeric enzyme found predominantly in the cytosol (1). SOD1 is one of the most thermally stable enzymes known in mesophilic organisms. Dismutase activity declines at 80°C with a corresponding melting temperature, T m , above 90°C (2). The protein is stable in the presence of strong denaturants, and the activity is observed in 4% SDS or 10 M urea (3). Structural properties of SOD1 that contribute to this extreme thermochemical stability are thought to include an eight-stranded -barrel motif, hydrophobic interactions associated with dimerization, coordinate covalent bonds, and an intrasubunit disulfide bond between highly conserved pair of cysteines, namely Cys 57 and Cys 146 in the human form. Whereas the dimerization can contribute to the structural stability through the reduction of its mobility (4), the roles of the disulfide bond in the SOD1 function and/or structure are only now beginning to emerge. Inspection of the SOD1 structure reveals that the loop containing Cys 57 can influence the conformation of the catalytically important residue, Arg 143 , through a hydrogen-bonding network (5). Portions of this loop contribute to the dimer interface (6), leading to the possibility that the disulfide bond influences the protein dimerization and thereby the SOD1 quaternary structure.To attain th...
The (1)H NMR solution structure of the Cu(I)-bound form of Atx1, a 73-amino acid metallochaperone protein from the yeast Saccharomyces cerevisiae, has been determined. Ninety percent of the (1)H and 95% of the (15)N resonances were assigned, and 1184 meaningful NOEs and 42 (3)J(HNH)(alpha) and 60 (1)J(HN) residual dipolar couplings provided a family of structures with rmsd values to the mean structure of 0.37 +/- 0.07 A for the backbone and 0.83 +/- 0.08 A for all heavy atoms. The structure is constituted by four antiparallel beta strands and two alpha helices in a betaalphabetabetaalphabeta fold. Following EXAFS data [Pufahl, R., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., Cizewski Culotta, V., Penner-Hahn, J. E., and O'Halloran, T. V. (1997) Science 278, 853-856], a copper ion can be placed between two sulfur atoms of Cys15 and Cys18. The structure of the reduced apo form has also been determined with similar resolution using 1252 meaningful NOEs (rmsd values for the family to the mean structure are 0.67 +/- 0.12 A for the backbone and 1.00 +/- 0.12 A for all heavy atoms). Comparison of the Cu(I) and apo conformations of the protein reveals that the Cu(I) binding cysteines move from a buried site in the bound metal form to a solvent-exposed conformation on the surface of the protein after copper release. Furthermore, copper release leads to a less helical character in the metal binding site. Comparison with the Hg(II)-Atx1 solid-state structure [Rosenzweig, A. C., Huffman, D. L., Hou, M. Y., Wernimont, A. K., Pufahl, R. A., and O'Halloran, T. V. (1999) Structure 7, 605-617] provides insights into the copper transfer mechanism, and a pivotal role for Lys65 in the metal capture and release process is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.