Yersinia enterocolitica biotype 1A (B1A) strains are considered as non-pathogenic; however, some reports have identified some strains as the causal agents of infection. In South America, few studies molecularly characterized the strains of this biotype. This work typed 51 B1A strains isolated from clinical and non-clinical sources from Brazil and Chile by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) to elucidate their genotypic diversity, and verify the distribution of 11 virulence markers by PCR. The strains were divided into two groups, ERIC-A and ERIC-B, clustered independently of their clinical or non-clinical origin. No differences were observed in the frequencies of the virulence markers between clinical and non-clinical strains. However, the genes ystB, hreP and myfA occurred exclusively in the strains of the group ERIC-A. Some clinical and non-clinical strains were clustered in the same genetic group and presented the same number of virulence markers, which might suggest the role of the environment and food as a potential source of infection for humans and animals. The results corroborate with the hypothesis that B1A strains are divided into two main clusters that differ in the frequency of some virulence markers, a fact observed for the first time in South American strains.
This study aimed to evaluate the occurrence of Listeria monocytogenes in cheese and in the environment of three small-scale dairy plants (A, B, C) located in the Northern region state of São Paulo, Brazil, and to characterize the isolates using conventional serotyping and PFGE. A total of 393 samples were collected and analyzed from October 2008 to September 2009. From these, 136 came from dairy plant A, where only L. seeligeri was isolated. In dairy plant B, 136 samples were analyzed, and L. innocua, L. seeligeri and L. welshimeri were isolated together with L. monocytogenes. In dairy plant C, 121 samples were analyzed, and L. monocytogenes and L. innocua were isolated. Cheese from dairy plants B and C were contaminated with Listeria spp, with L. innocua being found in Minas frescal cheese from both dairy plants, and L. innocua and L. monocytogenes in Prato cheese from dairy plant C. A total of 85 L. monocytogenes isolates were classified in 3 serotypes: 1/2b, 1/2c, and 4b, with predominance of serotype 4b in both dairy plants. The 85 isolates found in the dairy plants were characterized by genomic macrorestriction using ApaI and AscI with Pulsed Field Gel Electrophoresis (PFGE). Macrorestriction yielded 30 different pulsotypes. The presence of indistinguishable profiles repeatedly isolated during a 12-month period indicated the persistence of L. monocytogenes in dairy plants B and C, which were more than 100 km away from each other. Brine used in dairy plant C contained more than one L. monocytogenes lineage. The routes of contamination were identified in plants B and C, and highlighted the importance of using molecular techniques and serotyping to track L. monocytogenes sources of contamination, distribution, and routes of contamination in dairy plants, and to develop improved control strategies for L. monocytogenes in dairy plants and dairy products.
Salmonella Enteritidis is a major causative agent of foodborne outbreaks worldwide. Using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and pulsed-field gel electrophoresis (PFGE), this study assessed the genetic relatedness, the pathogenic potential, and antimicrobial resistance in 60 strains isolated from chickens and the farm environment in Brazil between 2004 and 2010. The resulting concatenated dendrogram of the two methodologies distinguished the strains into two clusters. Some strains isolated from the two sources were indistinguishable. All the strains contained the 13 virulence markers investigated. Forty-four strains were resistant to nalidixic acid. Quinolone resistance presented by many strains suggests that quinolones may have been used to treat chickens. The high prevalence of virulence markers highlights the importance of poultry as vehicles of S. Enteritidis strains that have the potential to cause disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.