Natural-fiber-reinforced polymer composites have recently drawn attention as new materials for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present work, a comparison was carried out between the ballistic performance of UHMWPE composite, commercially known as Dyneema, and epoxy composite reinforced with 30 vol % natural fibers extracted from pineapple leaves (PALF) in a hard armor system. This hard armor system aims to provide additional protection to conventional level IIIA ballistic armor vests, made with Kevlar, by introducing the PALF composite plate, effectively changing the ballistic armor into level III. This level of protection allows the ballistic armor to be safely subjected to higher impact projectiles, such as 7.62 mm caliber rifle ammunition. The results indicate that a hard armor with a ceramic front followed by the PALF/epoxy composite meets the National Institute of Justice (NIJ) international standard for level III protection and performs comparably to that of the Dyneema plate, commonly used in armor vests.
A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are effectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young’s modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites.
Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant (Ananas erectifolius) is a promising strong candidate to replace synthetic fibers, such as aramid (Kevlar™), in multilayered armor system (MAS) intended for ballistic protection against level III high velocity ammunition. Another remarkable material, the graphene oxide is attracting considerable attention for its properties, especially as coating to improve the interfacial adhesion in polymer composites. Thus, the present work investigates the performance of graphene oxide coated curaua fiber (GOCF) reinforced epoxy composite, as a front ceramic MAS second layer in ballistic test against level III 7.62 mm ammunition. Not only GOCF composite with 30 vol% fibers attended the standard ballistic requirement with 27.4 ± 0.3 mm of indentation comparable performance to Kevlar™ 24 ± 7 mm with same thickness, but also remained intact, which was not the case of non-coated curaua fiber similar composite. Mechanisms of ceramic fragments capture, curaua fibrils separation, curaua fiber pullout, composite delamination, curaua fiber braking, and epoxy matrix rupture were for the first time discussed as a favorable combination in a MAS second layer to effectively dissipate the projectile impact energy.
The great environmental impact caused by mineral production has forced mining and ornamental stone industries to acquire new concepts and technical solutions in order to develop eco-friendly and sustainable activities. In this context, this work aims to study the durability of soil-cement block with the incorporation of limestone residues from the processing of marble as an ornamental stone. Specimens were prepared with 30, 40 and 50 vol% of residues added to the soil-cement mixture and analyzed for their physical, chemical and mineralogical properties. After the curing period, the specimens were subjected to mechanical analysis and the established experimental program showed that the addition of residues in the mixture becomes feasible for the preparation of soil-cement blocks, exhibiting improved results when compare to a reference block without residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.