The development and validation of crystal plasticity models requires the ability to map deformation at the microstructural scale. Here, a new method of highresolution deformation mapping is used to measure strain, material rotation and lattice rotation in austenitic stainless steel at sub-micron resolution. Electron back-scatter diffraction maps are used to link the deformation to the microstructure. Deformation occurs in domains, in which most of the plastic strain originates from the activation of a single slip system with high resolved shear stress. Within domains, slip is localized in lamellar regions that increase in number with strain. The deformation incompatibility between grains that develops as a consequence of this single crystal like behaviour is accommodated by either a gradient in slip intensity and the consequent development of lattice curvature at the grain boundary or the activation of an additional high stressed slip system and the consequent formation of a complementary deformation domain within the grain. In many cases, however, lattice curvature across grain boundaries is small because the deformation domains in neighbouring grains are M A N U S C R I P T A C C E P T E D ACCEPTED MANUSCRIPT 2 compatible. The implications of these observations for continuum crystal plasticity modelling are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.