Structural variation in genomes can be revealed by many (dis)similarity measures. Rearrangement operations, such as the so called double-cut-and-join (DCJ), are large-scale mutations that can create complex changes and produce such variations in genomes. A basic task in comparative genomics is to find the rearrangement distance between two given genomes, i.e., the minimum number of rearragement operations that transform one given genome into another one. In a family-based setting, genes are grouped into gene families and efficient algorithms have already been presented to compute the DCJ distance between two given genomes. In this work we propose the problem of computing the DCJ distance of two given genomes without prior gene family assignment, directly using the pairwise similarities between genes. We prove that this new family-free DCJ distance problem is APX-hard and provide an integer linear program to its solution. We also study a family-free DCJ similarity and prove that its computation is NP-hard.
BackgroundRearrangements are large-scale mutations in genomes, responsible for complex changes and structural variations. Most rearrangements that modify the organization of a genome can be represented by the double cut and join (DCJ) operation. Given two balanced genomes, i.e., two genomes that have exactly the same number of occurrences of each gene in each genome, we are interested in the problem of computing the rearrangement distance between them, i.e., finding the minimum number of DCJ operations that transform one genome into the other. This problem is known to be NP-hard.ResultsWe propose a linear time approximation algorithm with approximation factor O(k) for the DCJ distance problem, where k is the maximum number of occurrences of any gene in the input genomes. Our algorithm works for linear and circular unichromosomal balanced genomes and uses as an intermediate step an O(k)-approximation for the minimum common string partition problem, which is closely related to the DCJ distance problem.ConclusionsExperiments on simulated data sets show that our approximation algorithm is very competitive both in efficiency and in quality of the solutions.
BackgroundThe genomic similarity is a large-scale measure for comparing two given genomes. In this work we study the (NP-hard) problem of computing the genomic similarity under the DCJ model in a setting that does not assume that the genes of the compared genomes are grouped into gene families. This problem is called family-free DCJ similarity.ResultsWe propose an exact ILP algorithm to solve the family-free DCJ similarity problem, then we show its APX-hardness and present four combinatorial heuristics with computational experiments comparing their results to the ILP.ConclusionsWe show that the family-free DCJ similarity can be computed in reasonable time, although for larger genomes it is necessary to resort to heuristics. This provides a basis for further studies on the applicability and model refinement of family-free whole genome similarity measures.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2130-5) contains supplementary material, which is available to authorized users.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.