The knowledge of the electromagnetic constitutive properties of materials is crucial in many applications. Free-space methods are widely used for this purpose, despite their inherent practical difficulties. This paper describes an affordable free-space experimental setup for the characterization of flat samples in 1–6 GHz in a non-anechoic environment. The extracted properties are obtained from the calibrated Scattering Parameters, using a frequency-by-frequency solution or a multi-frequency reconstruction. For the first, we describe how the Time-Domain Gating can be implemented and used for filtering the signals. For the latter, a weighting factor is introduced to balance the reflection and transmission data, allowing one to have a more favorable configuration. The different role of transmission and reflection measurements on the achievable results is analyzed with regard to experimental uncertainties and different noise scenarios. Results from the two strategies are analyzed and compared. Good agreement between simulation, measurement and literature is obtained. According to the reported results for dielectric materials, there is no need of filtering the data by a Time-Domain Gating in case of the multi-frequency approach. Experimental results for Polymethylmethacrylate (PMMA) and Polytetrafluorethylene (PTFE) samples validate both the setup and the processing.
This paper describes a prototype of a free-space transmission setup for dielectric parameters estimation. The transmitter and receiver, both configurable by software and working in the range 0.85–1.55 GHz, are not synchronized, as they use different clocks. An estimation of the dielectric permittivity of a planar sample was obtained by comparing our measurements with a numerical model. A parametric study with different variables was conceived in order to find the best fit between measurements and simulations. Customized techniques were applied to deal with noise and inconsistencies found in the measurements. The genetic algorithm was used to adjust the constants that minimized the error between simulated and experimental data. Results for a reference sample of polymethylmethacrylate are presented and discussed. Although the accuracy of the proposed approach in recovering the dielectric parameters of the sample was relatively low, the simplicity and cost-effectiveness of this setup make it interesting for scenarios where a rough characterization of the material is sufficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.