Ghrelin is a 28-amino-acid polypeptide expressed in the stomach and hypothalamus that stimulates GH secretion, increases food intake (FI) and promotes body weight (BW) gain most likely via activation of the growth hormone secretagogue receptor type 1a (GHSR1a). GSK1614343 is a novel selective and potent GHSR antagonist with no partial agonist properties, recently characterized as GH secretion inhibitor by Sabbatini et al. [Chem Med Chem 2010;5:1450–1455]. In the present study, GSK1614343 (10 mg/kg) was not able to antagonize ghrelin-induced food consumption in rat, but unexpectedly stimulated FI and BW gain in both rats and dogs, a profile associated with decreased ghrelin plasma level. Interestingly, GSK1614343 selectively reduced the pro-opiomelanocortin mRNA levels in rat hypothalami chronically treated with the compound. To better understand the observed effects, we administered GSK1614343 (30 mg/kg) to Ghsr null mice and measured body mass components (fat, lean and free fluid) by using a NMR spectrometer. The increases of FI and BW were abolished in Ghsr null mice, while fat and lean masses increased in wild-type mice. Taken together, these results indicate that the orexigenic effect of GSK1614343 is mediated by GHSR1a and that the weight gain could be attributed to the increase of both adiposity and muscle mass, but not to fluid retention. The observed dissociation between effects on GH secretion and effects on FI/BW is inconsistent with a simple hormone-receptor model, suggesting unknown underlying regulations of the ghrelin system whose understanding require further investigation.
Pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified that increase the risk for developing Parkinson's disease in a dominantly inherited fashion. These pathogenic variants, of which G2019S is the most common, cause abnormally high kinase activity, and compounds that inhibit this activity are being pursued as potentially disease-modifying therapeutics. Because LRRK2 regulates important cellular processes, developing inhibitors that can selectively target the pathogenic variant while sparing normal LRRK2 activity could offer potential advantages in heterozygous carriers. We conducted a high-throughput screen and identified a single selective compound that preferentially inhibited G2019S-LRRK2. Optimization of this scaffold led to a series of novel, potent, and highly selective G2019S-LRRK2 inhibitors.
To identify new CRF(1) receptor antagonists, an attempt to modify the bis-heterocycle moiety present in the top region of the dihydropyrrole[2,3]pyridine template was made following new pharmacophoric hypothesis on the CRF(1) receptor antagonists binding pocket. In particular, the 2-thiazole ring, present in the previous series of compounds, was replaced by more hydrophilic non aromatic heterocycles able to make appropriate H-bond interactions with amino acid residues Thr192 and Tyr195. This exploration, followed by an accurate analysis of the substitution of the pendant aryl ring, enabled to identify in vitro potent compounds showing excellent pharmacokinetics and outstanding in vivo activity in animal models of anxiety, both in rodents and primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.